
Big on
Graphics

Kenwright

Tips, Tutorials, Examples, Snippets, Pitfalls, Discussions and News

Dawn of a new era
(No more hiding but at what cost)

Fractals
Hypnotic beauty

Vulkan
Top 5 programming mistakes

Parallax Mapping

Subsurface Scattering
(Real-time Approximations)

June 2020 Edition

Chaos and Randomness
(Realism in Imperfection)

Inspiring Creativity

EDITOR-IN-CHIEF, BIG ON GRAPHICS MAGAZINE Kenwright

THE INDEPENDENT GUIDE Big on Graphics Magazine is an independent guide to technologies in and around
computer graphics. Our mission is to explore, question, explain and review computer graphics (software and
hardware). Importantly, the purpose of the magazine is to remain objective and relay a variety of interesting
information from facts.

CONTACTING EDITORS We welcome comments from readers. Email your comments to the editor-in-chief. We
welcome articles and illustrations, however, before submitting manuscripts or material, please get in touch to discuss
your proposal

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under the
Copyright Act, without either the prior written permission of the Publisher, or authorization.

Most libraries, developers and published titles are trademarks of the companies. Use of a trademark to identify a
product commented upon in this magazine should be not be construed as implying the sponsorship of the trademark
holder, nor, conversely, should use of the name of any products without mention of the trademark status be
construed as a challenge to such status.

LIMIT OF LIABILITY/DISCLAIMER WARRANTY The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising here from. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information does
not mean that the author or the publisher endorses the information the organization or Website may provide or
recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

Subscribe to

Big on
GRAPHICS
Digital
Edition
Today!

Exciting comprehensive

resource for all your

computer graphics

technology solutions.

"How to" guides, trends,

latest news, and

technical articles on a

wide range of state of

the art subjects.

Welcome to the inaugural issue of Big on Graphics: a magazine of a new kind. With its
broad scope bridging (yet not limited to) computer graphics while taking into account
software engineering, artificial intelligence, applications and hardware technologies, the
magazine is dedicated to challenging and questioning rather than to simply agreeing and
repeating existing media. The magazine aims to stimulate debate and and raise questions
for thought. This combined with educational material to help you understand how computer
graphics works, how it functions, the limitations, benefits and trends (taking a look under the
bonnet) - including indie, experimental and homebrew topics. Recently, Computer Graphics
technologies have become an essential tool in nearly every walk of life - mobile,
visualization, computation, entertainment, movie industry and more.

There are currently a number of organisations and research programs around the world that
explicitly or implicitly focus on computer graphics. Yet, despite impressive successes and
growing interest in the graphics domain, wide gaps continue to separate different
approaches from each other necessary to rise and address some of the biggest graphical
challenges of our age. While disjointed technical communities may speak different
languages and pursue independent goals, at least they're pushing the limits of computer
graphics. In this situation, the mission of the magazine is to foster a wider understanding of
the unifying graphical topics and highlight interesting areas for concern. In doing this, the
magazine will provide insights for important questions. e.g.: which is the best computer
graphics architecture for real-time environments? What are the aesthetic and computational
limitations for state of the art CGI models? How to give human-like emotional feeling and
creativity to visual models? Both mature and new cutting edge research are welcomed by
the magazine, provided they have a strong topic of interest and aligns with the magazines
theme (opinion reviews, ad-hoc approaches, mathematical concepts simplified for readers
and so on).

Without a double, a lot of has happens in computer graphics in recent years, some things
have been really, really amazing and deserve recognition for their worth and value they
have made to the industry. Of course, computer graphics is multidisciplinary subject, and can
really make a difference to the world. Unfortunately, a lot of discoveries and advancements
don't always make a substantial impact, usually because of the technical challenges or are
difficult to accept (stuck in certain ways/old approaches). The magazine hopes to share
information and help explain some of the jargon and headaches circling the computer
graphics world.

Computer graphics makes most of us devout believers due to the inherent beauty that is
possible - which stimulates our imagination. You might not agree, or you might say it's a
bias, but how can you not love the computer graphics discipline. While the topic is
challenging on many levels, the mathematics, software engineering and the artistic
component, the rewards at the end are worth the effort. However, unlike some subjects,
computer graphics is constantly changing and evolving (stay on your toes and you must also
evolve and adapt). You can't watch a film, play a game or use your mobile phone without
computer graphics getting used.

This magazine is not for financial gain, it's done for the passion of the subject. The love of
code, mathematics and how they come together to create a banquet for the eyes.

Why is Vulkan so
Complicated? 2.

Is Vulkan falling behind DirectX? 5.

Did Apple make the right decision
with Metal? 8.

The Quest to improve Video
Game Graphics 9.

Subsurface Scatting and
Translucency Approximations

12.

Fractal Geometry 15.
Generating Mandelbulbs

Machine Learning 20.
(Tuning Shader Parameters)

Parallax/Normal Mapping 22.

Writing an OpenCL Ray Tracer 28.

Table of Contents

Does the Vulkan API trade simplicity for control?

For seasoned software developers, who've been exposed to a
variety of API and programming languages, they will argue, that
we need Vulkan, that the trend in recent years has been to
'simplify' (or spoon feed programmers, which is wrong! Hiding
away the complexity, such as, memory management and
simplifying/limiting the API, has hindered the developers
abilities (it's like developers can't be trusted to write safe, robust,
reliable code).

People who have mastered core mathematical concepts and low-
level programming principles, find the transition to new
languages and API relatively easy (Vulkan is just another API).

In some cases though, developers find Vulkan difficult, as they
do not have a solid understanding of the underlying computer
architecture (e.g., how memory works, stacks and low-level
registers).

While many new API and programming languages are
designed to be more 'user friendly', this comes at a cost. For
example, you do not have complete control, such as, defining
and allocating your own memory and data structures. You
might think that someone very smart is doing it for them under
the bonnet. But this is not always the truth. As you'll be aware,
there are many times, when you launch and application or a
library only to be left waiting, and wondering, why you have a
high-end multicore computer, yet your library is running slow
and inefficiently.

Previous Graphical API where based on old ways of thinking
(stacks and single-core systems). Many people consider this
approach sufficient. Vulkan on the other hand is not limited by
this way of thinking. Personally, Vulkan's complexity should
not be seen as a disadvantage. The long term benefits
outweigh the initial time and commitment necessary to learn
how Vulkan works.

The one thing that Vulkan lacks, is any 'default' options. The
majority of the time, when you're writing a Vulkan application,
is you need to do all the work.

Then there is the Vulkan design philosophy: You never pay for
what you don't use.

Vulkan means you don't have to worry about excess bagage.
The legacy of backward compatibility, both with earlier
versions (i.e., OpenGL).

As a bonus, the Vulkan API standard library is lean, and
adding to it is a conservative process, so sometimes you need
to go outside of the standard library for what you need, and that
means dealing with either your own libraries, or third party
libraries of inconsistent style, quality, and complexity.

None of this would be possible if the API took care of all the
memory-related work for you, if it had the need of a garbage
cleaner, if it needed you to have a framework or runtime
machine to interpret operations in the background, or if the
program wasn't compiled to binary before running. Vulkan
is hard because you need to do stuff that previous API did
under the hood. Vulkan is hard because it's similar to the
way machines speak, not to the way humans speak. Vulkan is
hard because the result should be easy to compile, instead of
easy to debug/mantain.

It's a trade, and it's the Vulkan API that was used to build the
Graphical/Compute systems of the future, the latest vidoe
games, graphical design packages, modelling packages are
probably already using or moving over to Vulkan. It works
when you understand it and the world is full of capable
Vulkan API developers. Mastering Vulkan is akin to riding a
bike or learning mathematics, once you get over the curve, it's
not so bad.

Although Vulkan is harder to use, it gives you absolute control
over the machine resources, and if you understand your
hardware architecture and you're a good coder that usually
means noticeably higher speeeds: There are tests were Vulkan
is multiple times faster than previous generation API.

Novel, easy to use API (OpenGL) are good for simple cases,
like the small practices in a computer science course.
However, real world applications (triple-A video games, real
time systems, compute vision, profesional software
development, operative system development, driver
development) have extreme requirements simple API can't
meet.

You start coming across such cases when you try to develop
hardcore graphical demos/programs. Ever tried to make a
realistic interactive 3-dimensional scene? It's too slow to work,
unless you start thinking about optimization. Ever tried to
create heavy graphical algorithms that need millions of
iterations to work? You don't want your graphics card or
program to 'stall'. Think of games, such as, Halo, Call of Duty
and other AAA games and the standard/quality expectations.
Those expectations were yesterday, tomorrows are even
higher! There's a reason why successful AAA games are
'successful'. It's laughable how some graphical programs used
for doing biology-related simulations take days to run (in a
distributed processing environment) when the same solution
would take hours if optimized for the Vulkan API (real life
story).

Right Tool for
 the Right Job

