
DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

WEBGPU API INTRODUCTION
Kenwright

iii

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

Copyright © 2022 Kenwright
All rights reserved.
No part of this book may be used or reproduced in any manner whatsoever without written permission
of the author except in the case of brief quotations embodied in critical articles and reviews.
BOOK TITLE:
WebGPU API: An Introduction
ISBN-13: 979-8-7958-6128-9

The author accepts no responsibility for the accuracy, completeness or quality of the information
provided, nor for ensuring that it is up to date. Liability claims against the author relating to material
or non-material damages arising from the information provided being used or not being used or from
the use of inaccurate and incomplete information are excluded if there was no intentional or gross
negligence on the part of the author. The author expressly retains the right to change, add to or
delete parts of the book or the whole book without prior notice or to withdraw the information
temporarily or permanently.

Revision: 06290912022

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

Preface
Today’s web-based programming environments have become more multifaceted for accomplishing
tasks that go beyond ‘browsing’ web-pages. The process of developing efficient web-based programs
for such a wide array of applications poses a number of challenges to the programming community.
Applications possess a number of workload behaviors, ranging from control intensive (e.g., searching,
sorting and parsing) to data intensive (e.g., 3d-graphics, image processing, simulations and data min-
ing). Web-based applications can also be characterized as compute intensive (e.g., iterative methods,
numerical methods, and financial modeling), where the overall throughput of the web application is
heavily dependent on the computational efficiency of the underlying hardware. Of course, no sin-
gle architecture is best for running all classes of workloads, and most applications possess a mix of
the workload characteristics. For instance, control-intensive applications tend to run faster on the
CPU, whereas data-intensive applications tend to run fast on massively parallel architectures (like
the GPU), where the same operation is applied to multiple data items concurrently. To extend and
support these various workload classes so that browser-based applications wouldn’t be hindered, a
new generation of API needed to be developed (open the door for developers so that they can access
the power of new hardware/technologies). One example of this, is the WebGPU API which exposes
the capabilities of GPU hardware for the Web. This text is intended to help you get started with the
WebGPU API, while understanding both the HOW and WHY behind it works, so you can create
your own solutions. The material in this book is designed to teach you the new WebGPU API for
graphics and compute techniques without any prior knowledge. All you need is some JavaScript ex-
perience and preferably an understanding of basic trigonometry. Whether you’re new to graphics and
compute development or an old pro, everyone has to start somewhere. Generally, that means starting
with the basics which is the focus of this course. You’ll learn through simple, easy-to-learn hands-on
exercises that help you master the subject. It does this by using multiple task-based activities and
discussions which complement and build upon one another.
• Understand the core principles of the WebGPU API
• Ground yourself with compute and graphical principles
• Familiarize yourself with the WebGPU API methods
• Create graphical and compute applications using JavaScript and the WebGPU API
• Use and understand application/shader communication/data transfers
• Learn about the WGSL shader language
You’ll learn how to leverage the WebGPU API to build interesting and useful web-based applications.
This text will give you a number of examples that you can test and run to help you see the real power of
the WebGPU API. Hopefully, after reading this text, you’ll embrace the WebGPU API and continue
to explore and take advantage of benefits it offers.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

Brief Contents

1 Introduction and Overview 3

2 Getting Ready for the WebGPU API 13

3 Shaders (WGSL) 25

4 WGSL Ray Tracer 39

5 Graphic Buffers (Meshes) 45

6 Position/Displacement Mapping) 57

7 Uniforms/Transforms (Matrices) 63

8 Textures 71

9 Lighting 83

10 Normal Mapping 87

11 Shadows (Shadow Maps) 99

12 Environment Mapping (Cube Mapping) 111

13 Parallax Mapping 125

14 Ambient Occlusion 147

15 Post-Processing Effects 159

16 Deferred Rendering 167

Appendix 179

Index 183

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

Contents

1 Introduction and Overview 3
1.1 Introduction . 3
1.2 Who is this book for? . 5
1.3 What does this book cover? . 6

1.3.1 What this book do ‘NOT’ cover . 7
1.4 WebGPU vs WebGL . 7
1.5 Book layout . 8
1.6 Plan for ‘Change’ . 8
1.7 Bottom Up Approach (Building Blocks) . 9
1.8 Programming Language (JavaScript and WGSL) . 9
1.9 Summary . 10

1.9.1 Code Samples . 11
1.9.2 Exercises: Challenges . 11

2 Getting Ready for the WebGPU API 13
2.1 Introduction . 13
2.2 Checking your WebGPU API Status . 14
2.3 WebGPU API Components . 14

2.3.1 Buffers . 15
2.3.2 Binding Groups . 15
2.3.3 Shader Modules . 16
2.3.4 Queues . 16
2.3.5 Textures (Texture Views) . 16
2.3.6 Samplers . 17
2.3.7 Command Buffers . 17
2.3.8 Pipelines . 17
2.3.9 Passes . 18

2.4 Your First WebGPU Program (Hello Compute) . 18
2.5 Your First WebGPU Program (Hello Graphics) . 20
2.6 Summary . 22

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.6.1 Exercises: Challenges . 23

3 Shaders (WGSL) 25
3.1 Introduction . 25
3.2 WGSL Syntax Basics . 25

3.2.1 Scalar and matrix types . 26
3.2.2 Structs . 26
3.2.3 Uniform buffer object . 27
3.2.4 Functions declarations . 27
3.2.5 Built-in . 27
3.2.6 No preprocessor (#define/#ifdef/#if defined()) 28
3.2.7 <f32> everywhere (32-bit) . 29
3.2.8 Branching . 29
3.2.9 Braces . 29
3.2.10 Function overloading . 30

3.3 Look at WGSL Shader . 30
3.4 Attributes . 31

3.4.1 Variable declarations (var/let) . 31
3.5 Structs . 32
3.6 Function Syntax . 33
3.7 Texture Sampling . 33
3.8 WGSL Capabilities . 33
3.9 Ternary Operator . 33
3.10 If/Else . 34
3.11 No Arithmetic Assignment or Increment . 34
3.12 Assigning to Vector Components . 34
3.13 Limited Vector/Scalar Overloading . 35
3.14 WGSL vs GLSL . 35
3.15 Random Pixel Colors (Chaos) . 36
3.16 Summary . 36

3.16.1 Exercises: Challenges . 37

4 WGSL Ray Tracer 39
4.1 Introduction . 39
4.2 Writing a Ray Tracer . 39
4.3 Pipelines and Data Optimization/Management . 43
4.4 Summary . 43

4.4.1 Exercises: Challenges . 44

x

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

5 Graphic Buffers (Meshes) 45
5.1 Introduction . 45
5.2 Vertex & Index Buffers . 46
5.3 Rendering Cube . 47
5.4 Procedural Shapes (Spheres and Donuts) . 50

5.4.1 GeoSphere . 50
5.4.2 Torus/Donut . 52

5.5 Summary . 54
5.5.1 Exercises: Challenges . 55

6 Position/Displacement Mapping) 57
6.1 Introduction . 57
6.2 Plane (Sine-Waves) Water Waves . 57
6.3 Displacement Maps . 62
6.4 Summary . 62

7 Uniforms/Transforms (Matrices) 63
7.1 Introduction . 63
7.2 Uniforms (Pipeline-Shader) . 63
7.3 Transforms . 64
7.4 Transformed Cube . 64
7.5 Summary . 69

8 Textures 71
8.1 Introduction . 71
8.2 Depth Buffer Texture . 71
8.3 Textured Cube . 75
8.4 Summary . 81

xi

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

9 Lighting 83
9.1 Introduction . 83
9.2 Per Vertex or Per Pixel Lighting . 83
9.3 Directional Lighting . 84
9.4 Summary . 85

9.4.1 Exercises: Challenges . 85

10 Normal Mapping 87
10.1 Introduction . 87
10.2 Normal Mapping (Crate) . 88
10.3 Tangent, Bitangent and Normal (TBN) . 88
10.4 Computing Tangents . 88
10.5 Crate with Normal Mapping . 88
10.6 Summary . 98

11 Shadows (Shadow Maps) 99
11.1 Introduction . 99
11.2 Shadow Map Example . 99
11.3 Summary . 109

12 Environment Mapping (Cube Mapping) 111
12.1 Introduction . 111
12.2 Environment Maps . 111
12.3 Cube inside a Cube . 112
12.4 Summary . 124

xii

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

13 Parallax Mapping 125
13.1 Introduction . 125
13.2 Pixel Tricks . 125
13.3 Basic parallax mapping . 126
13.4 Steep parallax mapping . 127
13.5 Binary search steep mapping . 128
13.6 Parallax occlusion mapping . 128
13.7 Parallax Demo . 129
13.8 Summary . 145

13.8.1 Exercises: Challenges . 145

14 Ambient Occlusion 147
14.1 Introduction . 147

14.1.1 Different Types of Ambient Occlusion . 148
14.1.2 Screen Space Ambient Occlusion (SSAO) . 148

14.2 Skull Example . 149
14.3 Advanced SSAO . 157
14.4 Summary . 157

14.4.1 Exercises: Challenges . 158

15 Post-Processing Effects 159
15.1 Introduction . 159
15.2 Toon Shader Effect . 159
15.3 Summary . 165

15.3.1 Exercises: Challenges . 165

16 Deferred Rendering 167
16.1 Introduction . 167
16.2 Deferred Example . 168
16.3 Summary . 177

16.3.1 Exercises: Challenges . 177

xiii

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

Appendix 179
A.1 WGSL Reserved Words . 179
A.2 WGSL Keywords . 179
A.3 WGSL Syntactic Tokens . 180
A.4 WGSL Built-in variables . 180

Index 183

xiv

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1. Introduction and Overview

Figure 1.1: Computer
Specifications - A ded-
icated GPU (or graphics
processing unit) is now
a necessary part of most
computers (including mo-
bile phones) designed to
accelerate parallax com-
putations, such as, in
graphical applications.

1.1 Introduction

WebGPU API is the successor to the WebGL API and represents the largest
architectural change since the inception of browser-based GPU solutions.
The primary reason for this change is the demand from the industry to
provide an API that gives more power and control to the program-
mer. Vendor-specific driver implementations are often complex and impose
CPU performance overheads that developers have no control over. Much
of these overheads could be avoided if the API gave more control back to
the developers. One example of this is the driver overhead that is present
in WebGL resource management. Drivers needed to track the lifetime of
every resource that is used by the rendering pipeline. Tracking of resources
by the driver is often unnecessary, if it can be assumed that the program-
mer can perform this task with much less overhead. Providing developers
with the tools to implement their own resource management takes that
responsibility away from the driver implementation and often allows for
performance improvements (if done correctly).

Yet with great power, comes great responsibility. It is true that this in-
creased responsibility makes learning the WebGPU API harder than learn-
ing the WebGL API. As with all things, the first time you encounter some-
thing, it may seem daunting or too difficult to learn but if you are persistent
in your desire to learn this new API, the rewards will be well worth it.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.1. INTRODUCTION CHAPTER 1. INTRODUCTION AND OVERVIEW

Don’t worry if you are a total beginner when it comes to graphics and
compute programming. This text is written with no assumptions about
your current skill level and presents simplified examples to give a kick
start. So even if you’ve never written any web GPU applications before,
you should be in safe hands.

Food for Thought
Processing Power

Parallel Thinking
For more than two decades, the computer in-
dustry has been inspired and motivated by
‘Moore’s law’ - which observed that the number
of transistors on a chip double every 18 months.
This observation created the anticipation that
the performance of applications from one gen-
eration to the next should also double. Con-
stant improvements in manufacturing and pro-
cessor technologies has not always feed through
to software applications. As new processor de-

signs have moved away from pushing ‘speed’
limits, but instead towards increased transistor
density which leverage parallel modalities. The
WebGPU API was designed to meet this impor-
tant need. It was defined and managed by the
nonprofit technology consortium Khronos. In
order to support future devices, WebGPU API
defines a set of mechanisms that if met, the de-
vice could be seamlessly included as part of the
web-browser environment.

WebGPU API is used to accelerate computations in web-based applications
that would traditionally be handled by the CPU on the browser. Even
though GPU programming has been viable for the past few decades using
native applications, its applications in browsers have been limited. Since
GPU programming has become a core resource in virtually every industry,
the WebGPU API couldn’t have come at a better time. For example, GPU
programming can been used to accelerate video, digital image, and audio
signal processing, statistical physics, scientific computing, medical imaging,
computer vision, neural networks and deep learning, cryptography, and
even intrusion detection, among many other areas.Figure 1.2: Done Cor-

rectly - Taking advan-
tage of massively paral-
lel GPU architectures can
be a big boom for per-
formance. Only if the
algorithm is suitable and
if done properly (not ev-
ery algorithm/processing
project is suitable for the
GPU).

No doubt that this is a very important text that provides students, hobby-
ists, academics and researchers with a better understanding of the world of
GPU programming in general and the solutions provided by the WebGPU
API in particular. The book is written so it fits with different learners
experience levels; and can be used either as a stand alone text or as a
reference guide to extend other material (lookup projects/examples).

Warning: The WebGPU API is still in the final phases of testing/de-
ployment for modern browsers (Chrome/FireFox). For details/status
updates (such as bugs and which features are available) you can check
online at: https://github.com/gpuweb/gpuweb/wiki/Impleme
ntation-Status

4

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 1. INTRODUCTION AND OVERVIEW 1.2. WHO IS THIS BOOK FOR?

Think About It!
Should you use a wrapper library instead of the WebGPU API directly?

In this day and age there are many free and
commercial libraries which you can get off the
shelf (e.g., Three.js). However, when you’re
learning computer graphics, it helps you mas-
ter the topic with greater understanding if you
write your own implementation (appreciate and
comprehend certain principles which might not
be explicitly clear if you were to use an existing
library - e.g., adhoc workarounds for numerical
errors and stability issues).
Of course, if you were to use a pre-existing li-
brary (mature library that has been used and
tested by multiple developers/games) - then you
can be sure of its stability and has been highly
optimized - and may save you time and let
you focus on other graphical elements (like the
shader effect not the loading models and setting
up boiler plate code).

However, when you are on the cutting edge -
that leverage’s new techniques or technologies -
then you might be better off writing your own
from the ground up - so you understand what’s
happening and why. Also if you’re developing
a bespoke feature which isn’t supported by an
existing library - you have to decide how much
time you want to put into integrating this new
feature into an existing library vs writing a new
library/feature.
Ultimately though, you should comprehend the
core mechanics - the mathematical, algorithms
and graphical concepts - for example, how the
graphics pipeline works and so on (vs just call-
ing methods with no idea of what’s happening
and why).

Note: There are numerous good books out there, where the authors
are more interested in showing you how clever they are, instead of
actually trying to teach a concept. Therefore, in most cases we’ll use
simple examples and avoid trying to confuse you. It’s the aim of this
book to educate, not to impress you so much that you stop reading.
Have fun and relax.

All major browser engines are working on implementing this the WebGPU
specification. Visit https://caniuse.com/webgpu to get an overview of
where all browsers and the different versions are:

1.2 Who is this book for?

This text is written for academics, creative coders, game developers, hob-
byists or anyone interested in getting started with the WebGPU API.
Ideally, a bit of coding experience, some basic knowledge of linear algebra
and trigonometry, and a passion for learning won’t harm. This text will
teach you how to use and integrate the WebGPU API into your projects,
improving their performance and graphical quality. Since the WebGPU

5

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.3. WHAT DOES THIS BOOK COVER? CHAPTER 1. INTRODUCTION AND OVERVIEW

Figure 1.3: Browser WebGPU Status - Visually see the WebGPU status of the most
popular browsers online at https://caniuse.com/webgpu.

API is a web-based standard which will be supported by all of the latest
browsers - means you’ll be able to run your projects on a variety of plat-
forms. Also the text introduces the reader to a new shader language, the
WebGPU Shader Language (WGSL) which was developed in parallel to
the WebGPU API.

1.3 What does this book cover?

This book will focus on the use of WebGPU API. You’ll start by learn-
ing the basic principles using minimal working examples (initializing the
API). Then you’ll continue to develop more complicated projects - each
project extending and taking the concepts to a higher level. You’ll learn
the foundations of the WebGPU shading language (WGSL) and apply it to
more useful scenarios such as: image processing (image operations, blurs
and other effects) and simulations (water ripples). Towards the end of the
book, you’ll see a set of advanced techniques (deferred shading/ambient
occlusion).

As you go through the material, there are interactive examples for you to
play with. When you change the code, you will see the changes immediately
(easy to update and run the code). The concepts can be abstract and
confusing, so the interactive examples are essential to helping you learn
the material. The faster you put the concepts into motion the easier the
learning process will be.

6

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 1. INTRODUCTION AND OVERVIEW 1.4. WEBGPU VS WEBGL

1.3.1 What this book do ‘NOT’ cover

This book isn’t about developing or learning a wrapper library/framework
for the API. It’s about learning the native WebGPU API through a variety
of different projects - so you get a solid foundation of what the API does
and how it works.

This is not a maths text. Although a number of the of algorithms and tech-
niques are explained, if your understanding of algebra and trigonometry is
weak, then you may struggle in some cases. In these cases, it’s recom-
mended that you consult one of the many texts on and around the subject
(e.g., principles of matrices/linear algebra/transforms/trigonometry).

Figure 1.4: WebGPU
vs WebGL - Web-based
GPU APIs.

1.4 WebGPU vs WebGL

GPUs understand computational problems in terms of graphics primitives,
early efforts to use GPUs as general-purpose processors required reformu-
lating computational problems in the language of graphics cards. Fortu-
nately, it’s now much easier to do GPU-accelerated computing thanks to the
new WebGPU API. This new API allow developers to ignore the language
barrier that exists between the CPU and the GPU and, instead, focus on
the higher-level computing concepts. Initially, WebGL was released which
quickly became the dominant API for web-based GPU solutions. The API
was designed to accelerate the creation of images for output to a display
device which was fine at the time. The WebGL API helped developers
dramatically speed up graphical applications by harnessing the power of
GPUs. Of course, to use the API for non-graphical applications was a
problem. Developers needed to have skills in graphical programming to
manipulate and control the WebGL API to create compute solutions (e.g.,
storing compute data in textures, performing the calculations and then
reading the result back). The WebGPU API changes all that - now, devel-
opers will be able to start creating GPU-accelerated web applications that
focus purely on ‘compute’ problems (without any need or graphical knowl-
edge). As technologies have changed over the decades, WebGL has tried to
remain backward compatible with existing designs. The WebGPU API is a
fresh design that lets developers get more access to low-level hardware/re-
sources for improved performance/acceleration/control. So web-based
applications can reach a new higher level.

7

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.5. BOOK LAYOUT CHAPTER 1. INTRODUCTION AND OVERVIEW

1.5 Book layout

Most of the code in the book text consists of rather long statements (such
as blocks of code). Hence, some statements may wrap around to the next
line. If you have problems reading the code samples in the text, remember
you can view the source code for all the sample programs and more online
at: https://webgpulab.xbdev.net

1.6 Plan for ‘Change’

Even though the WebGPU API is in the final phases of release, they are
still subject to potential changes as well as specification uncertainties. You
should not ignore this - just because your program works today - doesn’t
mean it will work tomorrow. Make sure you keep track of any changes and
feed them through to your applications (regularly check and schedule time
for fixes).

Figure 1.5: Under-
stand How Each

Block Works/Con-
nects - Learning and

understanding how
all the API com-

ponents work and
operate; will hope-

fully, give you more
freedom and con-

trol later on so that
you’re able to create
bespoke applications

that fit your needs
(won’t be hindered
or held back by an

existing framework).

8

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 1. INTRODUCTION AND OVERVIEW 1.7. BOTTOM UP APPROACH (BUILDING BLOCKS)

Figure 1.6: Bottom Up
- Nothing to everything.
Starting from simple
examples which are
extended and expanded
upon so you eventually
get to a complex result
(understand how and why
everything fits together).

1.7 Bottom Up Approach (Building Blocks)

This book takes a bottom up approach to understanding the WebGPU API.
Not about teaching you an existing library or framework. Instead, this
text, works with very minimalistic working examples; then incrementally
modifies the implementations to address limitations/problems while adding
extra features and understanding.

Bottom-up approaches are always thought to be very inefficient ways to
approach new subjects initially, and are often contrasted with top-down
learning, which is thought to be more efficient (e.g., starting with a com-
plete fully working program/library and take it to pieces).

The reason for this, is we believe that learning the WebGPU API should be
done using a bottom-up ideology; it gets you involved with small programs
from the beginning while boosting your engagement and satisfaction. Keep
in mind that everyone is different; not everyone will be experts in coding
and graphics. Learning this way (from basics) - will also give you an op-
portunity to detect pain points and plug those skills gaps (anything you’re
unfamiliar with). In addition, plenty of value can be derived from going
over the basics. Implementing and learning smaller programs that are ac-
tually relevant and useful will also come in useful later on (when you start
to develop your own applications).

At the same time, factors such as code complexity, technological advance-
ments/updates and time are all important; but a forward-thinking ap-
proach in addition to understanding the challenges and depth of the API
cannot be underestimated (all too easy hide away functionality until it
comes back to haunt you later on).

1.8 Programming Language (JavaScript and
WGSL)

The majority of this text evolves around practical examples (not just theo-
retical). Nearly all of the examples are written in mostly in JavaScript and
WGSL (WebGPU shader language). It is helpful, if you’re already expe-
rience with web-programming, i.e., JavaScript syntax, declaring variables,
functions, lambdas and arrays; otherwise, you may struggle in some as-
pects. However, that doesn’t mean you can’t combine this text with other
learning resources/books. JavaScript is one of the world’s most popular
programming language; also the programming language of the Web. While

9

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

1.9. SUMMARY CHAPTER 1. INTRODUCTION AND OVERVIEW

JavaScript is easy to learn, it’s also a language which can cause people a
lot of pain and suffering; so be careful!. While this text focuses on the
WebGPU API, be aware, poorly structured JavaScript (or WGSL) code
- due to unfamiliarity with the language syntax/features may cause your
WebGPU journey to be very bumpy. Also the programs are written for
client-side applications - such as setup/data loading and so on (that is you
don’t need an active server to run the WebGPU programs).

Warning: One of the biggest mistakes early JavaScript developers
make - especially developers who have come from other programming
environments (like Java or C++) are burned by misconceptions of curly
brackets and variable scope (block level scope for var variables).

• Familiar with the JavaScript language features
• Careful about Memory Leaks (global variables stay around or any vari-

ables that are still referenced)
• Remember the Types of Equality ====== , ========= , !=== , !======
• Take advantage of "strict mode"

When it comes to programming the GPU, you’ll have to use shaders (small
programs that run on the GPU). These programs are written in a shader
language (few different shader languages available). However, with the
introduction of the WebGPU API came a new shader language known
as ‘WGSL’ which is short for ‘WebGPU Shader Language’. The WGSL
has similarities with JavaScript, such as, the syntax for declaring simple
variables (var and let). Of course, as you’ll learn in later chapters, don’t
let these similarities make you neglect learning the official WGSL syntax
(otherwise, again, you’ll end up in a world of pain).

1.9 Summary

Don’t be ignorant to the power of the GPU!

The WebGPU API has emerged to fill a need. Over time, once the We-
bGPU API is accepted, it will let developers make significant advancements
(performance/applications).The biggest advantage for WebGPU API is the
potential for huge cross-platform access through a web browser (no plug-
ins or external libraries required). The idea is that anything that has a
web browser (which is just about everything) is now capable of taking full
advantage of the systems resources (GPU). Unfortunately, there are still
minor issues, the WebGPU API is still in the final stages of development,
and there is the conundrum of support for older browsers/devices. How-
ever, there is a big push by major browsers to support the WebGPU API
(which means exciting times ahead for web-applications - especially when
combined with other technologies and APIs, such as, eXtended Reality

10

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 1. INTRODUCTION AND OVERVIEW 1.9. SUMMARY

(WebXR API) and Speech-to-Text/Natural Language APIs.

1.9.1 Code Samples

Learners often rely on sample code as a crutch. The goal of code samples
should be to give enough to get started but not to give away the fun of
solving the problem. As a result, the sample code provided in this text
is focused on the task at hand (small examples). As you work your way
through the text, you’re encouraged to implement good coding practices as
you develop your applications using the WebGPU API. The code samples
demonstrate the subject in a way to make it understandable. This often
may not be the best or most efficient solution, however, there are also a
large number of resources/texts online that can be combined with this text
(complement your learning).

1.9.2 Exercises: Challenges

You may just want to get to coding! The “challenges” at the end of each
section, will present programming challenges that allow you to apply what
you have learned. They are designed to get you thinking about the appli-
cation of the topics and often result in tools or sample code that can be
used in later projects.

11

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2. Getting Ready for the WebGPU API

2.1 Introduction

Figure 2.1: Takeoff -
Launching your first pro-
gram - and hopefully
many more to come.

The promise behind WebGPU is an awesomely faster API that provides
lower level control to the graphic resources from JavaScript. However,
getting started with the WebGPU API takes a bit more work - as the API
has exposed more of underlying hardware (which you have to configure and
manage).

Now it is time to start your learning journey together. Your first steps
introduce you to the basics of the WebGPU API (check if the WebGPU
API is available, initialize a device, access resources and memory, create a
simple pipeline, output some graphics to the screen). From this beginning,
which uses the usual ‘Hello World’ type introduction (can’t break away from
tradition) - followed by step by step advancements that take incrementally
improve and extend your knowledge. At the end of this section, you’ll
hopefully have the WebGPU API up and running - be able to demonstrate
some core features of the API.

Want to try out WebGPU API straight away? The examples in these
notes are also presented online using an interactive playground where you
can write, view and experiment with existing projects immediately (http
s://webgpulab.xbdev.net).

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.2. CHECKING YOUR WEBGPU API STATUS CHAPTER 2. GETTING READY FOR THE WEBGPU API

You’ll be glad to hear, that the WebGPU API is integrated in with the
browser - and doesn’t depend on any external resources. You should be
able to setup and run a program using the WebGPU API straightaway.
HOWEVER, your browser does need to support and have the WebGPU
API enabled.

Figure 2.2: Browser
Feature Flags -

While the WebGPU
API is in the final

phases of devel-
opment, it is dis-
abled by default

(necessary to check
your browsers set-
tings/flags) if you
want to run appli-

cations that use
the WebGPU API.

2.2 Checking your WebGPU API Status

Before you can start developing applications using the WebGPU API, you
need to check that it’s available.
if ("gpu" in window.navigator)
{{{

console.log('Yes!!! WebGPU is supported!');
}}}
else
{{{

console.log('Oh no! Either WebGPU is disable or not supported by your browser');
}}}

Warning: Just because the "gpu" object is available in the
navigator - this is not a guarantee that the WebGPU API is fully

functional and has all of the specification features. Also it doesn’t
guarantee that it is enabled or has the necessary privileges to access
the GPU (may fail or return null when trying to access the device).

2.3 WebGPU API Components

Before pushing further with coding examples, it’s worth taking some time
to quickly review some of the key components that make up the API (e.g.,

14

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 2. GETTING READY FOR THE WEBGPU API 2.3. WEBGPU API COMPONENTS

pipeline, buffers and binding groups). These are shown in Figure 2.3.

Figure 2.3: Core
Components -
A simplified visual
overview of the core
components within
the WebGPU API.

2.3.1 Buffers

Buffers are manage blocks of memory on the GPU (used for GPU oper-
ations/shaders/pipeline). Any data, vertex data, control structures and
uniforms for the shaders need to be created so that they’re accessible on
the GPU (i.e., GPUBuffer). When you create the buffer, you define its size
and usages (access permissions), then you can either copy predefined data
across or use it to store/receive data.

2.3.2 Binding Groups

Binding groups are the glue that connect the shaders, the buffers, the
textures and the pipeline together (they ensure consistency between
sizes/structures/formats).

15

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.3. WEBGPU API COMPONENTS CHAPTER 2. GETTING READY FOR THE WEBGPU API

2.3.3 Shader Modules

Shaders are written in a text based human-readable format (WGSL lan-
guage). These shaders are compiled into the machine language for the
GPU (shader modules manage the conversion, the details and handles to
the shader binaries).

2.3.4 Queues

Queues in WebGPU are the ‘execution points’ for the GPUs. Every GPU
has multiple queues available, and you can even use them at the same time
to execute different command streams. Commands submitted to separate
queues may execute at once. This is very useful if you are doing background
work that doesn’t exactly map to the main frame loop. You can create a
queues specifically for background work and have them separated from one
another (e.g., offsceen rendering or background compute simulations).

Figure 2.4: Multi-
ple Queues - Dis-

tribute the workload-
/commands across

multiple queues with
different configura-
tions (more flexible
and customizable).

2.3.5 Textures (Texture Views)

Textures come in a range of formats (1d/2d/3d/cube) and can be used in
various contexts/layouts (multiple resolutions/mipmaps). Hence, textures
are stored differently to raw buffer data. Texture views are a means to

16

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 2. GETTING READY FOR THE WEBGPU API 2.3. WEBGPU API COMPONENTS

manage access control to the texture data (access the texture data using a
texture view).

2.3.6 Samplers

WebGPU samplers encode transformations and filtering information that
can be used in a shader to interpret texture resource data. Essentially, the
sampler determines how the information is interpreted from the texture.
In the shader, the textures are usually accessed through samplers, which
will apply filtering and transformations to compute the final color that is
retrieved.

2.3.7 Command Buffers

All commands for GPU get recorded in a command buffer. All of the
functions that will execute GPU work won’t do anything until the command
buffer is submitted to the GPU (command buffers and put into a queues
for processing by the GPU).

2.3.8 Pipelines

A render pipeline (GPURenderPipeline) is comprised of the following render
stages:

1. Vertex fetch, controlled by GPUVertexState.buffers
2. Vertex shader, controlled by GPUVertexState
3. Primitive assembly, controlled by GPUPrimitiveState
4. Rasterization, controlled by GPUPrimitiveState ,

GPUDepthStencilState , and GPUMultisampleState
5. Fragment shader, controlled by GPUFragmentState
6. Stencil test and operation, controlled by GPUDepthStencilState
7. Depth test and write, controlled by GPUDepthStencilState
8. Output merging, controlled by GPUFragmentState.targets

A compute pipeline (GPUComputePipeline) comprises of only a single
stage:

1. Compute shader

17

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.4. YOUR FIRST WEBGPU PROGRAM (HELLO COMPUTE)CHAPTER 2. GETTING READY FOR THE WEBGPU API

2.3.9 Passes

The rendering (or compute operation) in takes place during
a ‘Pass’ (either a render pass or a compute pass). The de-
tails of which are described through a ‘descriptor structure’
GPURenderPassDescriptor / GPUComputePassDescriptor . The descrip-

tor to the pass details information about the bindings and the output from
the shaders.

2.4 Your First WebGPU Program (Hello
Compute)

The first program will be a simple compute example. You’ll create an array
of data, send it to the GPU, then read it back. After reading it back, you’ll
write it to the console window (check the values are what they should be).

Listing 2.1: Basic
WebGPU program that
does a compute opera-
tion. Doesn’t require a
graphical output (e.g.,
HTML CANVAS area).

A(async ()===> {{{

if (!navigator.gpu) {{{
console.log(

"WebGPU is not supported. Enable chrome://flags/#enable-unsafe-webgpu flag."
);
return;

B}}}

Cconst adapter=== await navigator.gpu.requestAdapter();
if (!adapter) {{{

console.log("Failed to get GPU adapter.");
return;

}}}
Dconst device=== await adapter.requestDevice();

// Get a GPU buffer in a mapped state and an arrayBuffer for writing.
Econst gpuWriteBuffer=== device.createBuffer({{{

mappedAtCreation: true,
size: 4,
usage: GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC

}}});
const arrayBuffer===gpuWriteBuffer.getMappedRange();

// Write bytes to buffer.
Fnew Uint8Array(arrayBuffer).set([0, 1, 2, 3]);

Console output for
Listing 2.1:
"0":0,"1":1,"2":2,"3
↪→ ":3

// Unmap buffer so that it can be used later for copy.
gpuWriteBuffer.unmap();

// Get a GPU buffer for reading in an unmapped state.
Gconst gpuReadBuffer=== device.createBuffer({{{

mappedAtCreation: false,
size: 4,
usage: GPUBufferUsage.COPY_DST | GPUBufferUsage.MAP_READ

}}});

18

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 2. GETTING READY FOR THE WEBGPU API2.4. YOUR FIRST WEBGPU PROGRAM (HELLO COMPUTE)

// Encode commands for copying buffer to buffer.
Hconst copyEncoder=== device.createCommandEncoder();

IcopyEncoder.copyBufferToBuffer(
gpuWriteBuffer, // source buffer
0, // source offset
gpuReadBuffer, // destination buffer
0, // destination offset
4 // size

);

// Submit copy commands.
const copyCommands===copyEncoder.finish();

Jdevice.queue.submit([copyCommands]);

// Read buffer.
await gpuReadBuffer.mapAsync(GPUMapMode.READ);
const copyArrayBuffer===gpuReadBuffer.getMappedRange();

Kconsole.log(new Uint8Array(copyArrayBuffer));
}}})();

A Certain methods of the WebGPU API take a while to complete, hence the
API supports asynchronous methodologies. Methods that do not complete
instantly, return a Promise which can be used to wait for a completion
event. To manage this asynchronous behaviour and make it easier to un-
derstand use the async and await features.

B Standard WebGPU check (if the API is available).

C You get an adapter, you call navigator.gpu.requestAdapter() .
requestAdapter() never fails, but may resolve to null if an adapter can’t

be found. An adapter may become unavailable; if it is unplugged from the
system, disabled to save power, or marked ‘stale’.

D You get a logical device by calling adapter.requestDevice() .

The GPUDevice provides APIs to create GPU objects such as buffers and
textures, and execute commands on the device. WebGPU separates the
concept of physical and logical devices. A physical device usually represents
a single complete implementation (excluding instance-level functionality),
of which there are a finite number. A logical device represents an instance of
that implementation with its own state and resources independent of other
logical devices. Physical devices are represented by GPUAdapter handles.

E Create a buffer on the GPU.

F Copy data to the buffer on the GPU.

G Create a second empty buffer on the GPU.

H Setup a command on the GPU for performing an operation.

19

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.5. YOUR FIRST WEBGPU PROGRAM (HELLO GRAPHICS)CHAPTER 2. GETTING READY FOR THE WEBGPU API

I Add the command to copy from one buffer to the other (on the GPU)

J Issue the command to execute the stacked commands (performs the
task). The queue allows you to send work asynchronously to the GPU.
At the moment (current API version), you can only access a single default
queue from a given GPUDevice (however, this is bound to change with
future updates).

K Copy the data from the second buffer back to the client program and
print it to the console.

The implementation might not seem very useful - but it has demonstrated
that your device is available, you can allocate a block of memory on the
GPU them move data around. As you’ll see later, these buffers on the GPU
can be passed between the compute and the graphics pipelines for storing
or providing data for calculations.

Note: Even though Listing 2.1 produce any graphical output (noth-
ing on screen), doesn’t mean the concept can’t be used for graphical
calculations. For instance, compute shaders can be used for image pro-
cessing or an offline rasterization/ray-tracing methods. As the compute
configuration/buffers means the device isn’t dependent on any HTML
graphical output resources - the concept can be extended to include
programmable shaders that allow any parallal computations to be per-
formed on the buffers (more than just copying as shown in the example)
- compute programs can be used for anything.

2.5 Your First WebGPU Program (Hello
Graphics)

Just for completeness, you can see a ‘minimal’ example of a WebGPU pro-
gram that outputs something graphically (triangle) to the screen. While
the listing only outputs a simple green triangle (Figure 2.5) the setup code
is quiet long. The WebGPU API has no ‘defaults’ (no hiding), the setup/-
configuration has to be defined by you. Hence, you need to include a simple
‘shader’. You’ll learn more about the WGSL shader language in detail later
on - but for now, to get a basic graphics program up and running it’s in-
cluded here. The program simply passes the values onto the output (no
complex transforms or buffers).

Figure 2.5: Triangle -
Output for Listing 2.2.

Listing 2.2: Sets up a
basic pipline for render-
ing a single green trian-
gle to the screen.

let canvas===document.createElement('canvas');
document.body.appendChild(canvas);
console.log(canvas);
canvas.width === canvas.height=== 512;

Aconsole.log('w:', canvas.width, 'h:', canvas.height);

let wgsltxt=== `

20

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 2. GETTING READY FOR THE WEBGPU API2.5. YOUR FIRST WEBGPU PROGRAM (HELLO GRAPHICS)

[[stage(vertex)]]
fn main_vs([[builtin(vertex_index)]] VertexIndex : u32)

-> [[builtin(position)]] vec4<f32>
{{{

var pos : array<vec2<f32>, 3>=== array<vec2<f32>, 3>(
vec2<f32>(0.0, 0.5),
vec2<f32>(-0.5, -0.5),
vec2<f32>(0.5, -0.5));

return vec4<f32>(pos[VertexIndex], 0.0, 1.0);
B}}}

[[stage(fragment)]]
fn main_fs() -> [[location(0)]] vec4<f32>
{{{

return vec4<f32>(0.0, 1.0, 0.0, 1.0);
C}}}

;̀

const gpu===navigator.gpu;
const adapter=== await gpu.requestAdapter();
const device=== await adapter.requestDevice();

// context type 'gpupresent' is deprecated. Use 'webgpu' instead.
// const ctx = canvas.getContext("gpupresent");
const ctx=== canvas.getContext("webgpu");

let configuration==={{{
device: device,
format: ctx.getPreferredFormat(adapter),
size : {{{ // the size of the canvas element in pixels

width: canvas.width,
height: canvas.height }}}

}}};
const res=== ctx.configure(configuration);
console.log('getCurrentTexture():', ctx.getCurrentTexture());

const wgsl=== device.createShaderModule({{{
code: wgsltxt

}}});

const pipeline=== device.createRenderPipeline({{{
vertex : {{{ module : wgsl, entryPoint: "main_vs" }}},
fragment: {{{ module : wgsl, entryPoint: "main_fs",

targets : [{{{ format: "bgra8unorm" }}}] }}},
primitive: {{{ topology: "triangle-list" }}}

}}});

let render===function () {{{
const commandEncoder=== device.createCommandEncoder();
const textureView=== ctx.getCurrentTexture().createView();
const renderPassDescriptor==={{{
colorAttachments: [{{{ view : textureView,

loadValue: {{{ r: 1, g: 1, b: 1, a: 1 }}},
storeOp : 'store' }}}

]
}}};

const passEncoder===commandEncoder.beginRenderPass(renderPassDescriptor);
passEncoder.setPipeline(pipeline);
passEncoder.draw(3, 1, 0, 0);
passEncoder.endPass();

21

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

2.6. SUMMARY CHAPTER 2. GETTING READY FOR THE WEBGPU API

device.queue.submit([commandEncoder.finish()]);
requestAnimationFrame(render);

}}};
requestAnimationFrame(render);

A In order to see what you’re drawing, you’ll create a HTMLCanvasElement
and setup a Canvas Context from that canvas. A Canvas Context manages
a series of textures you’ll use to present your final render output to your
<canvas> element.

B Vertex shader (written in the WGSL shader language)

C Fragment (or Pixel) shader (written in the WGSL shader language)
performs computations on each ‘pixel’. The example is very minimal, and
simply returns a fixed color for each pixel (green).

Food for Thought
Shader Languages

WGSL (WebGPU Shader Language)
WGSL is a well-thought API that was devel-
oped in conjunction to the WebGPU specifi-
cation to guarantee portability. The WGSL
shader language is different from other shader
languages (e.g., GLSL) for this because you
don’t need to translate anything at build/run-

time before talking to the WebGPU API. It’s
also has different capabilities, such as support
for atomic operations. However, the syntax can
take a little getting used to if you’ve previously
used other shading languages.

2.6 Summary

At the end of this section, you should have a minimal web application
running that uses the WebGPU API. The coding examples have given you
a taste of WebGPU operates, including some of the core features (e.g.,
GPU buffers, simple shader and pipeline). In this lesson you learned
a little bit about the various components of the WebGPU API and you
learned about the various stages of the pipeline. You also learned how to
initialize a WebGPU application. These are important details and just the
tip of the iceberg! In future sections, you will learn how to load vertices
and indices into index and vertex buffers, how to write and load shader
programs, perform basic lighting equations in a pixel shader, and how to
perform graphical effects.

22

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 2. GETTING READY FOR THE WEBGPU API 2.6. SUMMARY

2.6.1 Exercises: Challenges

• Modify the program given in Listing 2.2, so it draws different color
triangle (red, orange and blue)

• Using simple trigonometric functions (sin and cos), modify the vertex
shader so the triangle is rotated

• Change the draw function so it draws 2 triangle (i.e.,
passEncoder.draw(3, 1, 0, 0);;; - change the 3 to a 6), update

the vertex shader so it produces a ‘square’ instead of a single triangle
• Try modifying the graphical topology to different types and check the

output

23

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

3. Shaders (WGSL)

Figure 3.1: Many Ef-
fecs - change the shaders
to create an assortment of
effects/calculations (e.g.,
same sphere with differ-
ent visual lighting calcula-
tions).

3.1 Introduction

A Shader is a user-defined program designed to run on some stage of a
graphics processor (e.g., vertex or fragment shader). The WebGPU Shad-
ing Language (WGSL) is the shader language for WebGPU API. As with
other shader languages like GLSL, the WGSL language is not a native
language understood by the GPU. WGSL is a high level language which
has to be compiled to machine instructions for the GPU. The GPU only
runs machine code. Even though it is currently possible to use existing
OpenGL shader languages like GLSL with WebGPU; WGSL will be the
way to go in JavaScript.

3.2 WGSL Syntax Basics

Overall the syntaxes are similar – WGSL is a shading language so you still
talk to the GPUs in more or less the same fashion – but with some quirks
especially coming from the Web flavour of GLSL. I have implemented the
ability to use both WGSL and GLSL (4.5) in my WebGPU engine dgel so
I’ll share my findings here. Let’s just do a one-to-one feature comparisons.

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

3.2. WGSL SYNTAX BASICS CHAPTER 3. SHADERS (WGSL)

3.2.1 Scalar and matrix types

First off, even though the specs says that ‘Plain’ types in WGSL are similar
to ‘Plain-Old-Data’ types in C + +, you also very much feel the influence
of Rust in the design.

The bool (true/false) behaves the same but for other scalars it seems
somehow very important for you to know that they are 32-bit.

WGSL Scalar Types:
bool
i32
u32
f32

With WGSL, the component type needs to be specified in angle brackets
e.g. a vector with 4 int elements is vec4<i32> . Very explicit.

If you were thinking of rejecting this new type syntax and just alias them,
well sorry to disappoint but type vec4 === vec4<f32>;;; will fail as vec4 is
a reserved word.

The matrix types are also very verbose: matNxM<f32> with N columns and
M rows (2, 3, 4 each) of floats. No shorthand here.

WGSL Matrix Types:
mat2x2<f32>
mat3x2<f32>
mat4x2<f32>
mat2x3<f32>
mat3x3<f32>
mat4x3<f32>
mat2x4<f32>
mat3x4<f32>
mat4x4<f32>

It is also not possible to generate the ‘identity matrix’ as easily as with
mat4(1.0) . At least, they are still column-major.

At the time of writing, you can only pass vectors to construct the ma-
trix (e.g., mat2x2<f32>(vec2<f32>(1.0, 0.0), vec2<f32>(0.0,1.0));;;) but
specification is on the way to allow floats directly.

Arrays also have explicit types, array<E,N> , so an array of 8 vector 2 of
type float will be array<vec2<f32>, 8> .

3.2.2 Structs

Good news everyone, apart obviously from the members declarations, the
block structure is the same.

Listing 3.1: Example
WGSL Structure Syntax

struct Light {{{
// name type
position : vec3<f32>;
color : vec4<f32>;
attenuation : f32;
direction : vec3<f32>;
innerAngle : f32;
angle : f32;
range : f32;

}}};

Hard to get it wrong here, just make sure to end each members line with
a semicolon and not a comma.

26

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 3. SHADERS (WGSL) 3.2. WGSL SYNTAX BASICS

3.2.3 Uniform buffer object

Later on, you’ll use uniforms structures to pass data to the shaders (e.g.,
transforms or control parameters).

You need to declare a struct before you use the ‘struct’ - for instance, at
the top of the shader. As shown below for a group/binding in Listing 3.2.

Listing 3.2: Example
WGSL Struct Syntax

struct SystemUniform {{{
// name type
projectionMatrix : mat4x4<f32>;
viewMatrix : mat4x4<f32>;
inverseViewMatrix : mat4x4<f32>;
cameraPosition : vec3<f32>;
time : f32;

}}};
[[group(0), binding(0)]] var<uniform> system: SystemUniform;

3.2.4 Functions declarations

When you declare a function in WGSL, you use the keyword fn followed
by the function name. The arguments and return type follow the function
name (separated by the -> arrow); as shown in Example Listing 3.3.

Listing 3.3: Example
WGSL declaring func-
tions.

fn saturate(x: f32) -> f32
{{{

return clamp(x, 0.0, 1.0);
}}}

3.2.5 Built-in

WGSL defines a number of special variables for the various shader stages.
These built-in variables have special properties. They are usually for com-
municating with certain fixed-functionality.

Listing 3.4: WGSL
built-in defines at differ-
ent stages of the shader.

WGSL name Stage IO
vertex_index vertex in
instance_index vertex in
position vertex out
position fragment in
front_facing fragment in
frag_depth fragment out
local_invocation_id compute in
local_invocation_index compute in
global_invocation_id compute in
workgroup_id compute in
num_workgroups compute in
sample_index fragment in
sample_mask fragment in
sample_mask fragment out

27

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

3.2. WGSL SYNTAX BASICS CHAPTER 3. SHADERS (WGSL)

Example shader setup is shown below in Listing 3.5. You need to define the
main entry point function (instance_index) and define it in its returned
value (output struct position).

Listing 3.5: Example
of uniforms, structures,
and shader entry point.

// UBOs
struct SystemUniform {{{

projectionMatrix : mat4x4<f32>;
viewMatrix : mat4x4<f32>;

}}};
[[group(0), binding(0)]] var<uniform> system: SystemUniform;

struct MeshUniform {{{
modelMatrix : array<mat4x4<f32>, 256>;

}}};
[[group(1), binding(0)]] var<uniform> mesh : MeshUniform;

// Output
struct Output {{{

[[builtin(position)]] position: vec4<f32>;
}}};

[[stage(vertex)]]
fn main(

[[builtin(instance_index)]] instance_index : u32,
[[location(0)]] position : vec3<f32>

) -> Output
{{{

var output: Output;

let modelMatrix=== mesh.modelMatrix[instance_index];

output.position=== system.projectionMatrix * system.viewMatrix * modelMatrix * vec4<
↪→ f32>(position, 1.0);

return output;
}}}

Also note, the discard statement works in WGSL fragment shader. The
discard keyword can be used within a fragment shader to abandon the

operation on the current fragment. This keyword causes the fragment to be
discarded and no updates to any buffers will occur. Control flow exits the
shader and subsequent implicit or explicit derivatives are undefined when
this exit is non-uniform.

3.2.6 No preprocessor (#define/#ifdef/#if defined())

The assumption here is that preprocessing will happen on the client side,
for instance with string replacement (#include) or with template strings
in JavaScript. On the other hand, that means less extra code in shaders so
they might be more specialised and easier to read once pre-processed.

28

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 3. SHADERS (WGSL) 3.2. WGSL SYNTAX BASICS

3.2.7 <f32> everywhere (32-bit)

Currently, all the data types are 32-bit (so you’ll be limited to f32/i32/u32).

Arithmetic and assignments operators, l-values swizzling:
vec4 color === vec4(1.0);
color.xyz === vec3(0.1, 0.2, 0.3);
var color === vec4<f32>(1.0);
color === vec4<f32>(0.1, 0.2, 0.3, color.a);

The current specification is missing the important assignment operators
(+=== , -=== , *=== , /=== , %===...) as well as no increment (++), decrement
(--) or exponentiation (**).

You’ll have to make sure you don’t forget this when writing your shaders,
even simple operators, like ++ in loops aren’t allowed.

3.2.8 Branching

The WGSL syntax has a few qwerks that you should be aware of, especially
when comparing the language to JavaScript, such as, elseif vs else if .
Also you have to remember, braces are mandatory or you’ll get a syntax
error if you try to exclude them.

For more details on the WGSL syntax, refer to the online documenta-
tion/specification https://www.w3.org/TR/WGSL/#logical-builti
n-functions.

3.2.9 Braces

Bracing is mandatory, so
if (diff <=== 0.0) return vec3(0.0); // ERROR NO BRACKETS

has to be expanded to:
if (diff <=== 0.0) {{{ // CORRECT

return vec3<f32>(0.0);
}}}

29

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

3.3. LOOK AT WGSL SHADER CHAPTER 3. SHADERS (WGSL)

3.2.10 Function overloading

Function overloading is a very common operation - however, it’s very lim-
ited in WGSL. Following examples are not possible with the WGSL lan-
guage:
fn toLinear(v: f32) -> f32 {{{

return pow(v, GAMMA);
}}}

fn toLinear(v: vec2<f32>) -> vec2<f32> {{{
return pow(v, vec2<f32>(GAMMA));

}}}

fn toLinear(v: vec3<f32>) -> vec3<f32> {{{
return pow(v, vec3<f32>(GAMMA));

}}}

fn toLinear(v: vec4<f32>) -> vec4<f32> {{{
return vec4<f32>(toLinear(v.rgb), v.a);

}}}

3.3 Look at WGSL Shader

Let’s look at a simple WGSL fragment shader which tints the texture out-
put; basically multiplies the output texture color by a constant.
[[binding(0), group(0)]] var samplerFront : sampler;
[[binding(1), group(0)]] var textureFront : texture_2d<f32>;

[[block]] struct ShaderParams {{{
tintColor : vec3<f32>;

}}};
[[binding(2), group(0)]] var<uniform> shaderParams : ShaderParams;

struct FragmentInput {{{
[[location(0)]] fragUV : vec2<f32>;
[[location(1)]] fragColor : vec4<f32>;

}}};

struct FragmentOutput {{{
[[location(0)]] color : vec4<f32>;

}}};

[[stage(fragment)]]
fn main(input : FragmentInput) -> FragmentOutput {{{

var front : vec4<f32>===textureSample(textureFront, samplerFront, input.
↪→ fragUV);

var output : FragmentOutput;
output.color=== front * vec4<f32>(shaderParams.tintColor, 1.0);
return output;

}}}

The WGSL syntax can make the shader seem verbose and long. However,

30

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 3. SHADERS (WGSL) 3.4. ATTRIBUTES

the added information is to make the code a lot less ambiguous - almost
everything is spelled out explicitly. Lots of details have to be hard-coded
in, like the specific location of inputs and outputs. Even a small shader
has a few structs.

3.4 Attributes

Lots of things are marked up with attributes in [[and]] , such as
[[binding(1), group(0)]] . These imbue otherwise normal variables and

functions with special meanings, such as in this example, precisely which
binding slot in which bind group a texture corresponds to (which corre-
sponds to WebGPU API calls). WGSL’s attributes are pretty exhaustive
and can be used for everything from describing shader stages to the precise
binary layout of a struct.

There’s no referring to things by their name in WebGPU. You have to set
it all out in the shader. This can seem like a downside, as you don’t really
want to have to hard-code lots of details like binding slots in shaders across
a small ecosystem of third-party shaders, and WGSL does not provide a
preprocessor or even any good rules about using constants instead of literals
in attributes.

3.4.1 Variable declarations (var/let)

WGSL has a different syntax for variable declarations based on var with
explicit types.

Instead of using explicit type defines for your variable qualifiers, you use
var and let . Similar to JavaScript, so there’s a const too right? No.

It is only a Reserved Words for now. If you are looking for immutability,
go for let :

let GAMMA: f32 === 2.2;;;

One of the goals with var name: type was apparently to make it closer
to TypeScript. After some complaints, type inference has been added for
the sake of conciseness and readability so you can write:

var position === vec2<f32>(0.0, 0.0);;;

as well as:

var position: vec2<f32> === vec2<f32>(0.0, 0.0);;;

31

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

3.5. STRUCTS CHAPTER 3. SHADERS (WGSL)

Listing 3.6: Declaring
a variable in WGSL
shader (explicit type de-
tails).

var color : vec4<f32>;

Struct members and function parameters use a similar syntax but omit
var .

WGSL has no precision specifiers like lowp . You have to give everything
a specific type like f32 (a 32-bit float). Currently there’s no f16 type
either, but that should come as an extension in future - until then there’s
a whole lot of f32 going on.

WGSL does support automatic type deduction, which can save a lot of
typing. So if you initialise a variable to something, you don’t have to
specify the type, and it will be taken from the thing assigned.

Listing 3.7: Both ways
are valid for declaring
a variable - however,
you can explicitly in-
clude the ‘type’ with
the variable name dur-
ing the declaration.

// This way specifies the type twice
var color : vec4<f32>=== vec4<f32>(1.0, 0.0, 0.0, 1.0);

// The variable type can be omitted though
var color=== vec4<f32>(1.0, 0.0, 0.0, 1.0);

One seemingly cruel syntax choice is that coming from JavaScript, var
in WGSL means let in JS (i.e. reassignable), and let in WGSL means
const in JS (i.e. not reassignable), and in JS var is the old thing you’re

not meant to use any more. The rationale for this is based on the potential
wider appeal of WGSL outside the web. It may feel weird at first, but in
the end you’ll get used to the syntax.

3.5 Structs

In WGSL structs are used to represent uniform buffers as well as shader
inputs and outputs. They have a specific binary layout which your JS code
will need to match when updating them. If these are programmatically
determined, such as loaded from a file, you’ll also need to wrap your head
around the struct alignment rules in the WGSL specification. You can
also add attributes to explicitly place everything.

More uniquely structs are used for both shader inputs and outputs. This
actually makes sense and is a nice way to clearly define inputs and
outputs, with the main function accepting an input struct , returning
an output struct , and all members of the struct providing annota-
tions specifying their location. If there’s only one input or output using a
struct is optional, however, it’s usually best to be consistent and always

use structs .

32

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 3. SHADERS (WGSL) 3.6. FUNCTION SYNTAX

3.6 Function Syntax

The WGSL function syntax is actually pretty nice. It’s a good example of
how WGSL departs from the C-like syntax and goes with something that
looks a lot more like Rust. A simple add function looks like this:
fn add(a : f32, b : f32) -> f32
{{{

return a + b;
}}}

This also applies to the shader main function, plus annotations, and using
the special input and output structs as parameter and return value.

3.7 Texture Sampling

WGSL takes a modern approach to textures and samplers. Textures
and samplers are different and both have to be specified. You just use
textureSample which derives the type from the texture , which has the

type texture_2d<f32> .

3.8 WGSL Capabilities

WGSL is a really nice language with lots of juicy little features. For exam-
ple you can use the textureDimensions built-in to get the size of a texture
in a shader. If you can get a WebGPU context you get all these capabilities
as a baseline. The WebGPU specification mandates minimum capabilities,
such as being able to load 2D textures sized at least 8192x8192, which you
can rely on unconditionally in WebGPU code.

3.9 Ternary Operator

GLSL supports the ternary ?: operator. WGSL does not support this,
but provides the built-in function select(falseValue, trueValue, condition)
which does much the same thing (although mind that parameter order!).
It also provides vector overloads, which is a nice benefit.

33

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

3.10. IF/ELSE CHAPTER 3. SHADERS (WGSL)

3.10 If/Else

In WGSL braces around if are mandatory. As a result you
can’t write the usual C-style else if , as it would need to be
else if with curly brackets . To avoid this WGSL provides a special
elseif keyword.

// Sample WGSL if/elseif/else
if (colorDistance======blackDistance)
{{{

finalColor===colorBlack;
}}}
elseif (colorDistance======whiteDistance)
{{{

finalColor===colorWhite;
}}}
else
{{{

finalColor===colorMagenta;
}}}

It’s easy to forget that the braces are mandatory, leave them out, and
get a parse error. It’s another way WGSL code tends to end up verbose.
But it’s not the end of the world.

3.11 No Arithmetic Assignment or Incre-
ment

Arithmetic assignment operators like +=== are not currently supported in
WGSL. You’ll end up with a lot of code like n === n * 2 .

Further, there are no increment ++ or decrement -- operators. The
rationale again appears to follow Rust. Given the missing arithmetic as-
signment operators, it feels a bit silly to have to write i === i + 1 in a for
loop, but assuming we get arithmetic assignment then that can at least
become i +=== 1 .

3.12 Assigning to Vector Components

WGSL doesn’t yet have what’s technically known as “l-value swizzling”. In
practice this means you can’t assign to just a few components of a vector
- you have to replace the entire vector. For example:
// Declare a vector with 4 components
var color : vec4<f32>;

34

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

CHAPTER 3. SHADERS (WGSL) 3.13. LIMITED VECTOR/SCALAR OVERLOADING

// ...

// Not yet supported: assigning to just RGB components
color.rgb===someVec3;

// Workaround: assign a whole new vec4<f32>
color=== vec4<f32>(someVec3, color.a);

Presumably support for this will be added later. Fortunately
you can combine components in vector constructors, such as
vec4<f32>(someVec2, z, w) , as well as repeating components, such as
vec4<f32>(f) being equivalent to vec4<f32>(f, f, f, f) .

3.13 Limited Vector/Scalar Overloading

Limited builtin overloading for variable types in WGSL. For example ad-
dition + can be used to add vec3 + float and return a vec3 with the
float added to every component. However, the less-than < operator

only accepts vectors with the same number of components on both sides.
So if you write someVec3 < someFloat , you’ll get a syntax error and have
to change it to someVec3 < vec3<f32>(someFloat) .

Similarly several built-in functions currently require the same
vector types for all parameters, such as pow(a, b) and
clamp(x, a, b) . So in WGSL to clamp a value you’d have to write
clamp(someVec2, vec2<f32>(0.0), vec2<f32>(1.0)) .

3.14 WGSL vs GLSL

WGSL doesn’t aim to be compatible with other shader languges, such as,
GLSL (OpenGL Shader Language). The syntax departure is good evidence
of how this was a clean-slate redesign of a modern shader language. So don’t
assume the way something worked in GLSL will transfer across to WGSL.

Two minor examples of this are the WGSL % operator works slightly
differently to the GLSL mod function (one uses trunc, the other floor); and
atan(y, x) in GLSL is called atan2(y, x) in WGSL. There are probably

several more examples. They’re generally easy to work around if you refer
to both specifications to see how each work.

35

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

3.15. RANDOM PIXEL COLORS (CHAOS) CHAPTER 3. SHADERS (WGSL)

3.15 Random Pixel Colors (Chaos)

Modify the basic triangle example in Listing 2.2, to use the WGSL shader
code below in Listing 3.15. The extended example adds extra functionality
to the shader (JavaScript code remains same). The modified shader passes
the position information from the vertex shader to the fragment shader
using a structure. You add a random function which calculates a random
value based on the position. This random value is used for the rgb (red,
green, blue) output pixel color.

Figure 3.2: Random
Pixel Colors - The out-
put for the shader in List-
ing 3.15.

struct vsout {{{
[[builtin(position)]] Position: vec4<f32>;
[[location(0)]] p : vec3<f32>;

}}};

[[stage(vertex)]]
fn main_vs([[builtin(vertex_index)]] VertexIndex : u32) -> vsout
{{{

var pos=== array<vec2<f32>, 3>(
vec2<f32>(0.0, 0.5),
vec2<f32>(-0.5, -0.5),
vec2<f32>(0.5, -0.5));

var ret: vsout;
ret.Position=== vec4<f32>(pos[VertexIndex], 0.0, 1.0);
ret.p === vec3<f32>(pos[VertexIndex], 0.0);
return ret;

}}}

fn random(st:vec2<f32>) -> f32
{{{

return fract(sin(dot(st.xy, vec2<f32>(12.9898,78.233)))*43758.5453123);
}}}

[[stage(fragment)]]
fn main_fs([[location(0)]] p : vec3<f32>) -> [[location(0)]] vec4<f32>
{{{

var r=== random(p.xy);
var g=== random(p.xy*2.0);
var b=== random(p.xy*4.0);
return vec4<f32>(r, g, b, 1.0);

}}}

3.16 Summary

WGSL has a great syntax, and has lots to offer once you get used to the
syntax. It is powerful but also much more verbose, with every last detail of
your shader having to be spelled out. You could say the WGSL “explicit
is better than implicit” design principle that WGSl follows is a good idea.
WGSL code is always clear as you know exactly what it is doing, because
you have to specify it yourself to every last detail.

The main downside of WGSL is basically that it’s a young technology. It’s

36

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

Draft Revision; Title: WebGPU API An Introduction; Revision: 0.129

D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N
D
R
A
F
T
R
E
V
IS
IO

N

D
RA
FT

