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Figure 1: Iterative approach for dealing with coplanar triangles - (a) Calculate the shape centroid, (b) determine outer surface points using
support mapping (i.e., the normal from the centroid to each point), (c) project surface points onto a unit sphere (i.e., centroid to surface point
fixed length), (d) use the projected surface points to find the interconnected convex hull triangles, and (e) the indexes for each of the projected
surface points are the convex hull.

Abstract

Writing an uncomplicated, robust, and scalable three-dimensional
convex hull algorithm is challenging and problematic. This in-
cludes, coplanar and collinear issues, numerical accuracy, perfor-
mance, and complexity trade-offs. While there are a number of
methods available for finding the convex hull based on geometric
calculations, such as, the distance between points, but do not ad-
dress the technical challenges when implementing a usable solution
(e.g., numerical issues and degenerate cloud points). We explain
some common algorithm pitfalls and engineering modifications to
overcome and solve these limitations. We present a novel iterative
method using support mapping and surface projection to create an
uncomplicated and robust 2d and 3d convex hull algorithm.

1 Introduction

Problem Convex hull algorithms are an essential multi-discipline
technique important to several fields, such as, computer graph-
ics, pattern recognition, medical analysis and design automation
[Barber et al. 1996; Bentley and Shamos 1978; Gregorius 2014;
Graham and Frances Yao 1983]. While multiple approaches are
available (e.g., gift wrapping [Chand and Kapur 1970] and divide-
and-conquer [Preparata and Hong 1977]), writing a stable and ro-
bust three dimensional implementation is difficult and challenging.
Since implementing an algorithm in two dimensions may be easy,
but not so for three dimensions [Avis and Bremner 1995]. We sur-
vey a number of techniques and address common problems with
convex hull algorithms in practice. Since highly complex and de-
generate vertices arise in practice making it difficult to generate
a reliable convex hull painlessly. We present a novel method of
projecting the convex surface points onto a spherical boundary to
remedy numerical sensitivity that produces a simple and reliable
solution for both two and three dimensional problems.

Motivation The mathematics for generating a convex hull from
a set of points is well defined, yet there is no de factor standard
algorithm or implementation. A number of innovative and interest-
ing concepts have been published that solve the problem, yet the
implementation of a robust 3D convex hull algorithm is paved with
technical challenges [Avis and Bremner 1995]. The emphasis of
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this article is on a novel straightforward algorithm to produce a sta-
ble implementation that can be applied in both 2D and 3D easily.

Challenges While a number of innovative and original convex
hull algorithms have been presented, they do not address practi-
cal short-comings. Typically, the algorithms are presented in the
context of simple test cases, such as, two-dimensions, to explain
the working concept. We focus on the engineering enhancement
necessary for a real-world implementation. We create a variety of
test cases to evaluate the success and failure of the implementation
based upon specific problems (see Figure 3). Our solution does not
aim for an optimal answer, instead we focus on an uncomplicated
method that will generate an accurate convex hull reliably.

Previously As we would expect, the convex hull problem has
been well studied over the past few decades and resulted in a num-
ber of solutions (see Figure 2). There are two main class of algo-
rithm for solving convex hull problems: insertion algorithms and
pivoting algorithms [Avis and Bremner 1995]. With our implemen-
tation sitting within the insertion regime. An example of a success-
ful insertion method, is the qhull [Barber et al. 1996; Barber 1995-
2012] algorithm, which solves precision issues caused by coplanar
points by merging facets. This includes, merging a point into a
coplanar facet, merging concave facets, merging duplicate ridges,
and merging flipped facets. Similarly, a pivoting algorithm imple-
mentation used by the open source Bullet Physics Engine [Coumans
2012], is able to generate reliable convex hulls for collision detec-
tion problems. The Bullet convex hull implementation is based on
Preparata and Hong [Preparata and Hong 1977] method. This has
a time complexity of O(nlogn). Furthermore, to make the algo-
rithm less sensitive to rounding errors, all computations are done
with integer math. The algorithm handles degenerate cases, includ-
ing arbitrary flat and parallel faces. While our method is based
upon [Eddy 1977] (QuickHull), but reduces the computation of ex-
tremely sensitive collinear and coplanar issues by identifying outer
hull points and projecting them onto a common spherical surface.

Contribution Our main contributions include a definition for a
novel convex hull algorithm with less numerical sensitivity and the
ability to deal with collinear and coplanar vertices. The algorithm
presented in this article offers a number of desirable benefits:

X Easy to implement (i.e., both 2D and 3D)
X Terminating condition



Figure 2: Timeline - Let n is the number of points in the input set, and h is the number of vertices on the output hull. [A] Brute Force [B]
[Chand and Kapur 1970] [C] [Graham 1972] [D] [Jarvis 1973] [E] [Eddy 1977; Bykat 1978] [F] [Preparata and Hong 1977] [G] [Andrew
1979] [H] [Kallay 1984] [I] [Kirkpatrick and Seidel 1986] [J] EPA - Expanding Polytope Algorithm [Kim et al. 2002] [K] [Maus 1984]

X Can be used with a tolerance in the expansion step for automatic
simplification

X Handle ‘co-planar’ and ‘degenerate’ input data
X The output mesh is built entirely from the input vertices
X Can be applied to real-world complex models, not just point

clouds

Our approach is the engineering enhancement of mapping the sur-
face points onto a uniform sphere to solve a number of technical
shortcomings (e.g., user intervention (tweaking) and numerical is-
sues common with coplanar and collinear faces).

2 Related Work

The convex hull problem has received considerable atten-
tion in computational geometry [Gregorius 2014; Graham and
Frances Yao 1983; Kim et al. 2002; Maus 1984]. Computing a
convex hull (or just a “hull”) is one of the first sophisticated ge-
ometry algorithms, and there are many variations of it. The most
common form of this algorithm involves determining the smallest
convex set (called the “convex hull”) containing a discrete set of
points. This algorithm also applies to a polygon, or just any set of
line segments, whose hull is the same as the hull of its vertex point
set. There are numerous applications for convex hulls, for instance,
collision avoidance, hidden object determination, and shape analy-
sis.

The most popular hull algorithms are the “Graham scan” algorithm
[Graham 1972] and the “divide-and-conquer” algorithm [Preparata
and Hong 1977]. Implementations of both these algorithms are
readily available (see [O’Rourke 1998]). Both are O(nlogn) time
algorithms, but the Graham has a low run-time computation over-
head in 2D. However, the Graham algorithm does not generalize to
3D and higher dimensions, whereas the divide-and-conquer algo-
rithm has a natural extension. Figure 2 shows the time-line of hull
algorithms.

Our work is based around the insertion algorithm concept. Where
an initial convex hull approximation is created (i.e., a starting tetra-
hedron for 3D). We use the support mapping (e.g., see Expand-
ing Polytope Algorithm (EPA) [Kim et al. 2002]) and Quickhull
methodology to iteratively grow and encapsulate all the points to
form a convex hull.

Which method is best? It depends on what you want, for exam-
ple, do you want a 2D or a 3D solution? Are you concerned with
run-time speeds or numerical stability and accuracy?

- Parallelizable
- Memory Overhead
- Complexity
- Computational Speed
- Robustness and Numerical Sensitivity
- Number of Dimensions (2D or 3D)

3 Background

Convex Hulls A convex hull means the smallest convex region
which encloses a specified group of points. Technically, it is the
smallest convex set containing the points, and can be visualized
as a rubber band which wraps around the ‘outside’ points (i.e., all
other points must lie within this rubber band [Barber et al. 1996]).
A convex hull is different for dissimilar objects because it depends
upon the feature point of every object. For a detailed explanation
of Convex Geometry, see Joseph O’Rourke [O’Rourke 1998]. A
convex hull of a set is unique (upto co-linearities). Our method of
surface mapping and projecting the points onto a sphere reduces
sensitivity and co-linearity ambiguities.

Support Mapping Support mapping is often used in physics and
collision detection [Kim et al. 2002]. The support mapping for a
cloud of points given a direction is the point that is farthest in the
direction - which simply means finding the point with the maximum
dot product (i.e., dot(direction, point). The supporting point in any
direction is guaranteed to be on the surface of the convex hull cloud
of points. We exploit this concept in our algorithm to efficiently
determine the surface points.

No New Vertices We have an array of points and want to find
how they can be connected using triangles to form a convex hull.
No extra points are added. The vertices are numbered from 1 to
N , with each triangle formed by an array of three indices into the
vertex array. This is to avoid any numerical drifting. We work with
triangle and vertex indices and do not generate any new points.

Figure 4: Complex 3D Model - Complex model of a plant (19370
faces) mesh and generated convex shell (198 faces).

Centroid A bounded convex polyhedron is called a polytope.
The centroid of a convex polytope as the centroid of its vertices



Figure 3: Implementation Considerations - Example problems, such as, (a) multiple overlapping points, (b) co-planar points, (c) valid
triangle, (d) degenerate triangle (i.e., long and thin causes issues when calculating face normals - sliver-shaped triangles), and (e) coplanar
points - causing incorrect selection of faces for an expanding convex polytope (i.e., overlapping triangles resulting in concave errors as shown
in Figure 9).

is given by Equation 1.

1

n

n∑
i=1

pi (1)

where the centroid is composed of a set of points p1, ...pn. Note, the
centroid will be contained within the relative interior of the convex
hull.

Algorithm Overview Our algorithm adopts the well-known
QuickHull approach but with additional pre-phase culling and re-
mapping of the vertices. It starts by calculating the centroid and
performing a support mapping phase to strip inner vertices, the final
vertices are then mapped onto a spherical surface using the centroid.
From the set of points we use four points to generate a tetrahedron
(note - due to support mapping phase, we will not need to discards
any internal points as the hull grows). It then iteratively refines the
faces of the polyhedron by adding external points, and redistributes
the remaining points associated with each face among its children
faces. The refinement of a face is performed by selecting the fur-
thest point from its associated points and generating three children
triangles. We do not need to worry about concave edge swapping
or removing concave vertices.

4 Our Iterative Method

The convex hull algorithm presented in this paper focuses on 3D
cases. We are mainly interested in computing convex hulls that are
able to solve unforeseen problems for arbitrary clouds of points,
which can contain degenerate data, in addition to model scene ge-
ometry, such as, complex 3D geometric models (e.g., see Figure 6,
Figure 5, and Figure 11).

A preliminary stage is run to strip out and prepair the points. The al-
gorithm starts with a set of points. We remove duplicate points (i.e.,
points within a predefined tolerance). We calculate the centroid of
the set of points). We calculate the normal from the centroid to each
point and find the support vertex, and add it to a list. The list will
contain a set of points which sit on the convex hull surface. Using
the centroid, we project each surface point onto a sphere (i.e., with
the centroid the centre of the sphere).

The iterative stage starts by taking the first four vertices and con-
necting them to form the smallest possible starting closed mesh
(i.e., a tetrahedron). After we have set-up the tetrahedron, we it-
eratively grow the convex hull to encapsulate the rest of the surface
points and create the convex hull. We grow the convex hull by go-
ing through each of the surface points, and selecting the triangle

surfaces that are visible to the point. The visible faces are removed
and a new set of faces are added using the edges are are not shared
and the new surface point. The key stages are given in Algorithm 1.

• Point inside or outside a convex shape - we can easily deter-
mine if a point is inside a convex hull by iterating over all the
faces and checking if the point is on the inside of the plane (i.e.,
dot product). This can be useful for automatically checking if
the algorithm failed when developing the implementation.

• Faces that a point can see - we find all the faces that are visible
to a point by taking the dot product of the face normal and the
point (i.e., front facing if n • p > n • v, where n is the face
normal, v is a face vertex, and p is the test point).

• Extract edges from a set of faces - we have an array of edges
from all the found triangles, any edges that are shared (i.e.,
count > 1), are thrown away. Then the remaining edges are
used to create new triangles (i.e., edge and the new point).

Dynamics Our method is able to handle unknown sets of points.
In addition, due our algorithms iterative nature, we are able to han-
dle changing concave hulls, where points can be added or deleted
on-the-fly. Our convex hull algorithm is easily able to update the
mesh after each insertion/deletion operation.

Modifications The algorithm is flexible and can be modified to
approach the problem in different ways. For example, instead of
iteratively selecting each vertex in the list as we do in our imple-
mentation, we could exploit the support mapping concept further by
iterating over each face and select the point furthest from the face
to iteratively grow the convex polytope. Our algorithm relies on a
simple local geometric point-plane test to determine the position of
a point with respect to a plane, which is used to pick the triangles to
merge the point with. As we have already culled inner points with
the support mapping phase. All the points after the support map-
ping phase are used to create the convex hull surface. Projecting the
points onto a sphere reduces co-planar and co-linear issues. Due to
the approach the method does not require any swap operations to
resolve fold-overs and self-intersections which can complicate the
point-plane test and disturb their locality [Stein et al. 2012].

Optimisation We did not focus on any optimisations, but on a
novel solution for providing a robust and easy to implement method
that resolves common issues (i.e., reducing coplanar and collinear
points). However, the timing results for our implementation are
given in Figure 7 to shows the relationship between the number of
vertices and the elapsed time. Our iterative algorithm has a time
complexity O(n log n) since it is built upon the concept presented
by Clarkson and Shor [Clarkson and Shor 1989] which iteratively



adds external point to extend the convex polyhedron until the re-
maining set of points becomes empty.

Algorithm 1: Iterative 3D Surface Mapping onto a Sphere Convex
Hull Algorithm
Data: Array Points
Result: Triangle array representing the convex hull for the set of

Points
1 Remove duplicate points (i.e., within pre-defined distance

tolerance)
2 Calculate Centroid
3 Empty array spherepoints
4 for i=1 to num points do
5 Normal = Centroid to Points(i)
6 supportpoint = FindSupportPoint(Normal, Points)
7 Project surfacepoint onto sphere surface
8 Add supportpoint to spherepoints
9 end

10 Array hull
11 Construct a tetrahedron using spherepoints (e.g., first four points

points) add to array hull
12 for i=4 to num spherepoints do
13 Find all triangles that are visible to spherepoint(i) (i.e., front

of the triangle)
14 Remove found triangles from array hull
15 Find non-shared edges for the removed triangles
16 Add new triangles using spherepoint(i) and non-shared edges
17 end

5 Experimental Results

We implemented the algorithm using floating point precision in
C++ within Visual Studio 2013 and Windows-7. We evaluated our
implementation using various test scenarios:

• Various complex 3D models (e.g., gun, rabbit, teapot) - Figure
11, 6

• Procedural test case (e.g., Minkowski shape) - Figure 5 - this has
the added advantage of generating a wide variety of point data
(e.g., degenerate cases that may not naturally occur in preloaded
mesh models)

• Random point clusters - i.e., to provide approximate perfor-
mance metrics for the computational cost versus the number of
points - Figure 7

We also emphasis failure cases, as shown in Figure 8, Figure 9,
and Figure 10, which are caused when we do not include the ad-
ditional spherical surface projection phase to reduce co-linear and
coplanar issues. A point to note, is our approach reduces accuracy
constraints (i.e., numerical sensitivity) for different curved surfaces
by projecting the points onto a common spherical lattice. While we
can use support mapping to extrapolate the surface vertices, incor-
rectly expanding the initial tetrahedron, due to numerical sensitivity
and coplanar triangles, can produce mesh that engulfs the surface
vertices but be concave, as shown in Figure 9.

The randomly generate point set tests of different sizes ranged from
500 to 10000 points. For each size, we generate 5 different datasets
and average their run time. Figure 7 shows the run time details and
shows our algorithm is O(n log n).

6 Discussion

A number of factors come into question, such as, computational
speed and robustness. On the surface, a convex algorithm may ap-

Figure 6: Complex 3D Model - (a) Complex model of a gun (6174
points or 2058 faces), (b) wireframe view, and (c) generated convex
shell (342 points or 114 faces).

Figure 7: Random 3D Cloud of Points - Approximate performance
metrics measuring the time to generate a convex hull given differ-
ent sets of randomly generated 3D points (i.e., from 500 to 10000
vertices).

pear elegant and straightforward but can be difficult to implement
well. For example, for 3D point clouds, the solution can hit nu-
merical issues for small hulls and computational bottlenecks for
large numbers of points (10,000 or more vertices). While fixed-
point integer mathematics may help improve robustness, using real-
numbers with limited accuracy (e.g., floats or doubles) makes the
algorithm much faster but at a cost (e.g., stability and accuracy). We
presented a novel generic method that works effectively with real-
numbers that is able to deal with coplanar and collinear surfaces
without any complex engineering enhancements or user interven-
tions.

Our method works because a convex hull is defined by its vertices.
The advantage of our method over other approaches is the surface
vertices have already been found during the support mapping phase
without overhead. In terms of complexity, it has the benefit of not
having to do vertex culling when generating the convex surface.
Additionally, when combined with sphere mapping, it reduces the
need to perform swap operation to fix the convexity due to concave
and other edges.
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