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Dual-Quaternion Surfaces and Curves
Ben Kenwright

Abstract— Dual-quaternions offer an elegant and efficient possibility for representing parametric surfaces and curves due to their distinguish-
ing properties. While quaternions are a popular concept for representing rotations, dual-quaternions offer a broader classification (composition
of rotation and translation in a unified form). This paper presents a new approach using dual-quaternions for creating customizable parametric
curves and surfaces. We explain the fundamental theory behind dual-quaternion algebra and how it is able to be harnessed to describe
parametric geometry. The approach leverages popular mathematical concepts behind current parametric techniques. As we show, dual-
quaternions are suitable for describing control points for parametric equations. We provide the mathematical details, in addition to experimental
results to validate the approach.

Index Terms—surfaces, curves, interpolation, dual-quaternion, control points, design, graphics, geometry, graphics
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1 INTRODUCTION

The parametric representation of curves and surfaces is an
important technique used in many fields to model geometric
forms. This is due to the fact, that a parametric equation
is a compact and flexible form for representing geometry.
While there are a variety of parametric methods for repre-
senting curves and surfaces in computing (e.g., B-spline and
NURBS), one of the most popular and well known is the
Bézier technique. The Bézier approach has been successful,
as it offers a tool for interactive design for a broad range
of applications, such as, in visualization [25], [5], design
[12], [2], and even animation [24]. The Bézier’s approach
operates similar to other parametric techniques by employing
a control net (which is intuitive and flexible for users). The
control net is represented by a set of control points, typically,
in Euclidean space R3 or R2. The Bézier approach makes
it effortless to produce coordinated and controlled smooth
curves. Control points provide a visually intuitive solution,
and for many applications, are mathematically convenient.
The control points are typically represented by positions in
Euclidean space. While orientation information is able to be
combined with the control points (i.e., rotation and transla-
tion), they are calculated and interpolated in parallel (usu-
ally orientation in quaternion form due to the interpolation
properties). However, both translational and orientational
information are independent of one another (kept in separate
silos) with no spatial kinematic connection or relationship.
Existing research on curve and surface techniques have
focused predominately on the interpolation aspects with
several studies exploring new spline control techniques [18],
[11], [1], [3], [7], [21], [20], [8]. Non of these studies have
addressed how to unify the calculation of rotational and po-
sitional interpolation of curves and surfaces (based upon ex-
isting spline control concepts). While Hermite interpolation
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in combination with dual-quaternions has been suggested
by researchers [22], [13], the focus was on efficient spline
motions (i.e., compared to the geometric representation and
visualization as discussed in this paper). As we discuss, dual-
quaternions have gained considerable attention in the field of
robot control and computer animation [16], [19], [17], [15],
due to their mathematical properties, which we believe offer
potential benefits to parametric curves and surfaces. As far
as we know, this paper is the first to consider the geometric
representation of curves and surfaces with dual-quaternions
(coupled holistic connection between the position and ori-
entation control points). While several properties of Bézier
curves are inherited, new features are introduced in this paper
through our dual-quaternion approach.
As we show, dual-quaternions are a powerful mathematical
form, that can be used to construct free-form curves and
surfaces. As Bézier curves and surfaces have become fun-
damental tools in many challenging and varied applications,
ranging from computer-aided geometric design to generic
object shape descriptors. The shape is defined by the control
data and generated iteratively using the appropriate interpo-
lation algorithm. Interpolation data is typically ‘positions’
(i.e., surface points which make up the shape mesh). While
orientation data is able to be added, this is normally kept sep-
arate (detached and independent). Our approach, ‘combines’
the interpolation data as ‘dual-quaternions’ - which brings
together both orientation and translation information (unified
holistic form). The surface control points are represented by
dual-quaternions. Our approach extends Bézier surfaces and
curves, while keeping the same fundamental underpinnings
that have made it so popular (i.e., easy to compute and very
stable). What is more, our approach continues to produce
very smooth curves with continuity which makes it suitable
for design purposes.

Contribution The key contribution of this paper, is the ex-
planation and demonstration of dual-quaternions for creating
parametric curves and surfaces. The paper leverages existing
techniques in combination with the mathematics of dual-
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Fig. 1: Visual Overview of Quaternion and Dual-Quaternion
Components.

quaternions to create a solution that is both usable and
efficient. Our approach, builds upon the strengths of the
Bézier curve and surface technique to create a new poly-
nomial class with adjustable shape parameters. While dual-
quaternions have been well studied in computer animation
for the purpose of optimal blending of rigid transformations
SE(3) in character skinning, this paper proposes utilizing
dual-quaternion properties for optimal interpolation of
rotational and translational control points for the geomet-
ric design of curves and surfaces.

2 MATHEMATICS

This paper outlines an alternative modification to the Bézier
curve and surface method, with an aim to retain the un-
derlying properties. At the heart of our approach is dual-
quaternions. To ensure this paper provides sufficient detail
on the topic, we provide a compact and concise explanation
of the core mathematical concepts behind dual-quaternions
and how they fit into our proposed technique for generating
surfaces and curves. Dual-quaternions, although not as well
known as Quaternions, provide a fundamental and solid base
for describing three-dimensional transforms (orientation and
translation) of an object or a vector. They are efficient and
well suited for solving a variety of problems in computer
graphics and animation [15].

2.1 Algebraic Definitions

Quaternion Operations The quaternion was discovered by
Hamilton in 1843 as a method of performing 3-D multipli-
cation [16]. A quaternion q is given by Equation 1. Since
we are combining quaternions with dual number theory, we
give the elementary quaternion arithmetic operations (also
see Figure 1).

q = [s,~v], (qw, qx, qy, qz) (1)

where s scalar part is s = qw and vector part is ~v =
(qx, qy, qz). The four-tuple of independent real values as-
signed to one real axis and three orthonormal imaginary
axes: i, j, k.

• addition: q1+q2 = [s1, ~v1]+[s2, ~v2] = [s1+s2, ~v1+~v2]
• additive identity: 0 = [0, 0]
• scalar multiplication: kq = [ks, k~v]
• multiplication: q1q2 = [s1, ~v1][s2, ~v2] = [s1s2 − ~v1 ·
~v2, s1~v2 + s2~v1 + ~v1 × ~v2]

• multiplication identity: 1 = [1, 0]
• dot product: q1 · q2 = (q1xq2x + q1yq2y + q1zq2z +
q1wq2w)

• magnitude: ||q|| =
√
(s2 + ||~v||2)

• conjugate q∗ = [s,−~v]

Dual-Quaternion Operations The elementary arithmetic op-
erations necessary for us to use dual-quaternions.
• dual-quaternion: ζ = qr + qdε
• scalar multiplication: sζ = sqr + sqdε
• addition: ζ1 + ζ2 = qr1 + qr2 + (qd1 + qd2)ε
• multiplication: ζ1ζ2 = qr1qr2 + (qr1qd2 + qd1qr2)ε
• conjugate: ζ∗ = q∗r + q∗dε
• magnitude: ||ζ|| = ζζ∗

where qr and qd indicate the real and dual part of a dual-
quaternion.
For a beginners introduction to dual-quaternions and a
comparison of alternative methods (e.g., matrices and Euler
angles) and how to go about implementing a straightforward
library we refer the reader to the paper by Kenwright [16].
Kavan et al [14] also contains an introduction to dual
numbers and dual quaternions with discussions on screw
parameterization.

2.2 Algebra in Context

Dual-Quaternion Vector Transformation A dual-quaternion
is able to transform a 3D vector coordinate as shown in
Equation 2. Note that for a unit dual-quaternion the inverse
is the same as the conjugate.

p′ = ζ̂pζ̂−1 (2)

where ζ̂ is a unit dual-quaternion representing the transform,
ζ̂−1 is the inverse of the unit dual-quaternion transform. p
and p′ are the dual-quaternions holding 3D vector coordinate
to before and after the transformation (i.e., p = (1, 0, 0, 0)+
ε(0, vx, vy, vz) )).

Plücker Coordinates Plücker coordinates are used to create
Screw coordinates which are an essential technique of rep-
resenting lines. We need the Screw coordinates so that we
can re-write dual-quaternions in a more elegant form to aid
us in formulating a neater and less complex interpolation
method that is comparable with spherical linear interpolation
for classical quaternions.
The Definition of Pluc̈ker Coordinates:
• ~p is a point anywhere on a given line
• ~l is the direction vector
• ~m = ~p×~l is the moment vector
• (~l, ~m) are the six Pluc̈ker coordinate
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We can convert the eight dual-quaternion parameters to an
equivalent set of eight screw coordinates and vice-versa. The
definition of the parameters are given below in Equation 3:

screw parameters = (θ, d,~l, ~m)

dual-quaternion = qr + εqd

= (wr + ~vr) + ε(wd + ~vd)

(3)

where in addition to ~l representing the vector line direction
and ~m the line moment, we also have d representing the
translation along the axis (i.e., pitch) and the angle of
rotation θ.
Convert dual-quaternion to screw-parameters

θ = 2cos−1(wr)

d = −2wd
1√

(~vṙ~vr)

~l = ~vr

(
1√

(~vṙ~vr)

)

~m =

(
~vd −~l

dwr

2

)
1√

(~vṙ~vr)

(4)

Convert screw-parameters to dual-quaternion

wr = cos

(
θ

2

)
~vr = ~lsin

(
θ

2

)
wd = −d

2
sin

(
θ

2

)
~vd = sin

(
θ

2

)
~m+

d

2
cos

(
θ

2

)
~l

(5)

Dual-Quaternion Power We can write the dual-quaternion
representation in the form given in Equation 6.

ζ̂ = cos

(
θ + εd

2

)
+ (~l + ε~m)sin

(
θ + εd

2

)
= cos

(
θ̂

2

)
+ v̂sin

(
θ̂

2

) (6)

where ζ̂ is a unit dual-quaternion, v̂ is a unit dual-vector
(v̂ = ~l + ε~m), and θ̂ is a dual-angle (θ̂ = θ + εd).
The dual-quaternion in this form is exceptionally interesting
and valuable as it allows us to calculate a dual-quaternion
to a power. Calculating a dual-quaternion to a power is
essential for us to be able to easily calculate spherical
linear interpolation. However, instead of purely rotation
as with classical quaternions, we are instead now able
to interpolate full 6-dimensional degrees of freedom (i.e.,
rotation and translation) by using dual-quaternions.

ζ̂t = cos

(
t
θ̂

2

)
+ v̂sin

(
t
θ̂

2

)
(7)

Dual-Quaternion Screw Linear Interpolation (ScLERP)
ScLERP is an extension of the quaternion SLERP technique,
and allows us to create constant smooth interpolation be-
tween dual-quaternions. Similar to quaternion SLERP, we
use the power function to calculate the interpolation values
for ScLERP shown in Equation 8.

ScLERP(ζ̂A, ζ̂B : t) = ζ̂A(ζ̂
−1
A ζ̂B)

t (8)

where ζ̂A and ζ̂B are the start and end unit dual-quaternion
and t is the interpolation amount from 0.0 to 1.0.
Alternatively, a fast approximate alternative to ScLERP
was presented by Kavan et al. [14] called Dual-Quaternion
Linear Blending (DLB). Furthermore, dual-quaternions have
gained a great deal of attention in the area of character-based
skinning. Since, a skinned surface approximation using a
weighted dual-quaternion approach produces less kinking
and reduced visual anomalies compared to linear methods
by ensuring the surface keeps its volume.

3 METHOD

The mathematical method for curves can be extended to
surfaces. The most important element in this paper, for
the creation of the curves and surfaces is the use of dual-
quaternions (control points) and the interpolation technique.
As with other approaches, the shape is defined by a set of
points and the surface is created by interpolating between
points. The approach is flexible in its nature (e.g., different
dual-quaternion interpolation methods). The basic steps we
use in this paper are:
• Define the dual-quaternion control points
• Set the interpolation method (LERP, DLB or ScLERP)
• Iteratively construct the curve (or surface)

The control points define the geometric shape. We apply
an uncomplicated De-Casteljau’s algorithm to calculate the
interpolation points (since the algorithm is computationally
more suited and slightly more numerically stable than other
approaches as reported in the literature [10]). We tested both
a DQ-SCLERP and DQ-LERP interpolation method. While
our approach is applicable to other parametric curve (or
surface) models, we focus on Bézier approach, as this is
a popular choice that is numerically more stable than other
forms [6].
Converting between Euclidean coordinates and Euler/Quater-
nion Angles to a dual-quaternion format (see the Mathemati-
cal section on converting to and from the different coordinate
systems).

3.1 De-Casteljau’s Algorithm for Interpolation
Points

De-Casteljau’s algorithm is a recursive method for evaluating
the Bézier curve (or surface) at any point between the control
points. The method allows the properties of Bézier curve
(or surface) to be derived swiftly and efficiently without
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Fig. 2: De-Casteljau’s Algorithm for a Curve (using dual-
quaternions).

any reference to the Bernstein polynomials and essentially
with only geometric argument (i.e., dual-quaternion control
points). De-Casteljau algorithm is numerically more stable
way (compared to using the parametric form directly) of
evaluating the position of a point on the curve for any given
interpolation value (only requiring a series interpolations).
The geometric interpretation of De-Casteljau’s algorithm is
straightforward, and allows us to subdivide each segment
between dual-quaternion control points.
For example, the interpolation process for a curve (see Figure
2):

ζa = INTERP (t, ζ0, ζ1)

ζb = INTERP (t, ζ1, ζ2)

ζc = INTERP (t, ζa, ζb)

(9)

where INTERP is the interpolation calculation, discussed
in the mathematics section (e.g., DLB or ScLERP) and ζ are
the dual-quaternion control points.
For a surface, instead of a curve being parameterized by a
single variable t, we use two variables s and t (with a range
from 0 to 1). De-Casteljau’s algorithm can be extended to
handle Bézier surfaces. That is, the De-Casteljau’s algorithm
can be applied several times to find the corresponding point
on a Bézier surface p(s, t) given (s, t).

4 EXPERIMENTAL RESULTS

We tested our approach using a number of simple test cases
(e.g., 2D plots and 3D surfaces). The results show that
our approach is able to successfully generate curves (and
surfaces) using dual-quaterions for the control points (see
Figure 3 and 5). For curves, 3 to 4 control points provides
sufficient control and detail (however, due to the nature of
the algorithm, this is flexible and could easily be increased).
While the traditional Bézier approach uses control points
defined by vector positions and is contained within the
convex hull (made up of the control points), this is not
so for the dual-quaternion model. That is, dual-quaternion
control points are able to deviate outside of this convex hull

Fig. 3: Dual-Quaternion Control Points (Curves) - Three
control points with a plot of the intermediate points for the
surface. While the example illustrates a quadratic Bézier
(i.e., 3 points), a cubic Bézier curve with 4 points (or more)
is possible. Dotted line shows the interpolated path between
the control points. (bottom-left) orientation for all the control
points is the same.

(worth noting as this could be a disadvantage if the technique
requires a pre-defined containment geometry).

4.1 Example Application

An example applications that shows the potential benefits of
dual-quaternions for numerical optimization. Smooth inter-
polation between transforms (position and rotation/direction)
Our method allows us to create an ‘overshoot’ effect with
no snapping while producing a a smooth curve. Due to
the coupled nature of the transforms between way-points,
it allows us to have way-points influence the splines in
many ways (pass through points and directions) - stretch and
deform the curve while keeping the underlying properties.
For instance, the proposed technique can utilize both manual
design methods or automated tuning (fitting functions). Tun-
ing methods such as those presented by Tanaka et al. [23]
and Gálvez [9] use automated algorithms to reconstruct non-
uniform rational B-spline surfaces of a certain order from a
given set data.
Given a specific set of sample points (training data) and con-
straints (function/predefined surface). The dual-quaternion
approach allows the solution greater flexibility compared
to keeping the ‘positional’ and ‘orientational’ data separate.
This is due to the ‘coupled nature’ of our dual-quaternion ap-
proach (not confined to the bounding convex of the positional
data). To achieve this solution using a conventional Bézier
solution would require adding additional data points to the
sample data. This sort of situation is common in dynamic
surfaces which may bulge and skew surface for different
conditions (as shown in Figure 4).
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Fig. 4: Comparison - Given the same number of points the
unified method allows the creation of splines or surfaces that
deviate from the constrained (positional) way-points while
also representing orientationl details to meet the fitness (tun-
ing) criteria. (a) Shows the desired path given the positional
points and orientations using the unified dual-quaternion
spline. (b) Separate position and orientation spline is unable
to match the path without adding additional position way-
points.

Spatial displacement in 3-dimensional space of the X-Y-
Z position and Yaw-Pitch-Role angles independently can
be counter-intuitive. While quaternions are a convenient
notation for capture the orientation from R3 to R4 (angular
displacement and address limitations such as Gimbal lock).
Extending the advantageous benefits of quaternion algebra
for representing only rotational displacement operations to
dual-quaternions allows us to capture the positions and
orientation (R3 to R8).

4.2 Limitations

One limitation that our approach suffers from, is the fact
that the control points are dual-quaternions, which makes it
difficult for people to visualize. Hence, it can make it hard
for people to get a grip on the shape of the curve while
designing (and adjusting the control points). As with the
standard Bézier approach, it does not allow local control,
so moving one control point affects the whole curve (or
surface), mostly around the point that is moved.

4.3 When to use Dual-Quaternions to Create
Curves and Surfaces?

There are a variety of strengths and weaknesses of using
dual-quaternions for surfaces and curves. Dual-quaternions
offer an optimal interpolation solution for rotational and
translational control points in geometric design of curves/-
surfaces. At the heart of the dual-quaternion form is the
Bézier curve basis (with notable similarities), however, dual-
quaternions possess extra rotational information. Current

Fig. 5: Dual-Quaternion Control Points (Surface - 3x3
Control Net) - (Top left) flat surface with identical orienta-
tions), (Top right) control point positions are moved around
(orientations kept the same), (Bottom Left & Right) show the
control point positions are kept the same while the rotational
information is modified.

parametric representations consider positional and orienta-
tion components separately, and all the observations with
different levels of precision are given the same weight.
The dual-quaternion approach presents a unified positioning
and orientational model based on the robust de-Casteljau’s
algorithm. The question often follows, if we want to design
or implement a curve or surface when would we use the
dual-quaternion approach. Do we want to interpolate splines
that pass through data points, or do we want to design
the curves and surfaces by manipulating bounding regions
and orientations. This means the question concerning the
curves and surfaces focuses on design, rather than represen-
tation. Importantly, the dual-quaternion approach has both
interpolation and interactive manipulation characteristics.
Since iterative and automated approaches may be favored
over hand-based (visual) methods for generation. Subsequent
modifications taking place without display control (for ex-
ample the design might only specify limitations and fitness
criteria). The system would then be required to search for an
optimal solution given the specification (i.e., the user would
then not care about the underlying algorithmic mechanics).
Of course, software developers, do not often care much about
the beauty of a geometric concept - instead the priority is
numerical stability, complexity and performance consider-
ations. In terms of performance, given modern hardware
advancements, things are not always so clear cut (e.g.,
bespoke hardware structure), however, the dual-quaternion
algorithm is well suited to parallel architectures while being
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numerically stable and robust.

5 GENERAL DISCUSSION AND CONCLUSION

This paper has introduced a method for creating parametric
surfaces and curves using dual-quaterions for the control
points. Classical Bézier algorithms are restricted to the
representation of positional data, compared to our approach,
which adds a new aspect. We explained the mathemat-
ical underpinning, while showing experimental results to
demonstrate the validity of our proposed approach. Our
dual-quaternion approach is able to be exploited further
to produce a wide range of curves and surfaces. The link
between our approach and the Bézier algorithm is impor-
tant (both theoretically and from a practical aspect). Our
approach offers useful modifications and insights to the pop-
ular Bézier technique with applications in graphical design
and visualization (artistic opportunities). The de-Casteljau
algorithm was combined with dual-quaternions, however, the
current approach could also be generalized to other cases of
B-spline (i.e., deBoor algorithm). Possible future avenues
for exploration, would be the combination of our approach
with other interactive shape modeling tools, such as those
presented by Cui and Sourin [4], to investigate visualization
capabilities.
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[18] István Kovács and Tamás Várady. P-curves and surfaces: Parametric
design with global fullness control. Computer-Aided Design, 90:113–
122, 2017. 1

[19] Su Jin Lim and Kwang Ho Shon. Dual quaternion functions and its
applications. Journal of Applied Mathematics, 2013, 2013. 1

[20] Gregory M Nielson. CAGD’s top ten: what to watch. IEEE Computer
Graphics and Automation, 13(1):35–37, 1993. 1

[21] Larry I Schumaker. On shape preserving quadratic spline interpo-
lation. SIAM Journal on Numerical Analysis, 20(4):854–864, 1983.
1

[22] JM Selig. Rational interpolation of rigid-body motions. In Advances
in the Theory of Control, Signals and Systems with Physical Modeling,
pages 213–224. Springer, 2010. 1

[23] Teruo Tanaka, Takahiro Katagiri, and Toshitsugu Yuba. d-spline based
incremental parameter estimation in automatic performance tuning. In
International Workshop on Applied Parallel Computing, pages 986–
995. Springer, 2006. 4

[24] Hai Tao and Thomas S Huang. Bezier volume deformation model
for facial animation and video tracking. In International Workshop
on Capture Techniques for Virtual Environments, pages 242–253.
Springer, 1998. 1
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