Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

Dual-Quaternions

From Classical Mechanics to Computer Graphics and Beyond

Ben Kenwright
www.xbdev.net
bkenwright@xbdev.net

Abstract

This paper presents an overview of the analytical advantages of dual-quaternions and their potential in the areas of robotics,
graphics, and animation. While quaternions have proven themselves as providing an unambiguous, un-cumbersome,
computationally efficient method of representing rotational information, we hope after reading this paper the reader will
take a parallel view on dual-quaternions. Despite the fact that the most popular method of describing rigid transforms is
with homogeneous transformation matrices they can suffer from several downsides in comparison to dual-quaternions. For
example, dual-quaternions offer increased computational efficiency, reduced overhead, and coordinate invariance. We also
demonstrate and explain how, dual-quaternions can be used to generate constant smooth interpolation between transforms.
Hence, this paper aims to provide a comprehensive step-by-step explanation of dual-quaternions, and it comprising parts
(i.e., quaternions and dual-numbers) in a straightforward approach using practical real-world examples and uncomplicated
implementation information. While there is a large amount of literature on the theoretical aspects of dual-quaternions there
is little on the practical details. So, while giving a clear no-nonsense introduction to the theory, this paper also explains and
demonstrates numerous workable aspect using real-world examples with statistical results that illustrate the power and

potential of dual-quaternions.

Keywords: dual-quaternion, transformation, blending, interpolation, quaternion, dual-number

Introduction (Why should we use

dual-quaternions?)

Dual-quaternions are a neat mathematical tool that breaks
away from the norm. Probably one of their most important
properties is in classical mechanics since they can
represent complex problems in a unified compact way. A
dual-quaternion combines the linear and rotational
components together into a single variable that can be
interpolated, concatenated and transformed using a single
set of algebraic rules. While it has been demonstrated that
guaternions are the best general solution for rotations [1]
they can only represent half the rigid transformation.
Since, a full 3D rigid transformation is composed of a
translational and rotational component, which is
traditionally managed as a 4x4 homogenous matrix.
However, the matrix contains a great deal of overhead and
is difficult to interpolate between transforms.
Alternatively, the transformations can be managed using
two independent components (e.g., translation vector and a
quaternion). Therefore, dual-quaternions take us in a
different direction and present us with a unified component
that presents us with a huge number of advantages.

In a nutshell:

v' They combine rotation and translation into a unified
state variable

v' They are a compact representation (8 scalars)

v They are easily converted to other forms (e.g.,
matrices)

v' They can be interpolated easily without ambiguity or
gimbals' lock

Ben Kenwright (bkenwright@xbdev.net)

(October 2012)

v' They are computationally efficient (comparable with
matrices and quaternions) [2][3]

v They can be integrated into a current system with little
disruption (i.e., matrix alternative)

v' They present a single invariant coordinate frame to
representation rigid transforms [4]

Dual-quaternions are an algorithmically simple and
computationally efficient approach of representing rigid
transforms (i.e., rotation and translation). They are used in
the same way as quaternions but provide the added
advantage of encapsulating both translation and rotation
into a unified state that can be concatenated and
interpolated effortlessly. In fact, we believe that the reader
after reading this paper will be sufficiently familiar with
how dual-quaternion algebra works, and how it can be
used in practical situations, to begin to appreciate the
enormous potential dual-quaternions can offer, both for the
graphical community but also in other areas of research.

Overview (What we need to know)

Dual-quaternions are a combination of dual-number theory
and quaternion mathematics. Whereby, to have a good
understanding of how we can exploit dual-quaternions to
our advantage, we need to understand the basics of
quaternions and dual-number theory. Hence, this paper
begins by explaining the fundamental components of dual-
quaternions to help establish a common ground for readers,
after which, we then focus on dual-quaternions and the
applicability for representing transformations both
computationally and dynamically (e.g., calculating
differences and interpolating).

pp 1-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

Basically, a dual-quaternion is the concatenation of
quaternion and dual-number theory (see Figure 1).

h?;:ﬁ;i:;:ﬁss/ (Pudptme) £ Euausarions)
Theory / \ e

Flgure 1: Dual-Quaternions Components.

To avoid confusion and enable the reader to easily
distinguish a quaternion from a dual-quaternion we use
two discernible symbols to identify them (see Equation 1).

Quaternion(q)

it is essential to have a good understand of its underpinned
parts work (i.e.,, quaternions and dual-numbers).
Furthermore, once the reader understands how quaternions
work, it should be trouble-free and straightforward to see
how dual-quaternions operate due to their likeness.

A quaternion is represented by two fundamental parts, a
scalar real part (w) and an imaginary vector part (
V=X,Y,z). Inpractice we are only concerned with a unit-

quaternion since they offer the most benefits and represent
the rotation on a 4D unit-hypersphere. While the majority
of people are familiar with the decomposition and

. 1
Dual —Quaternion () principles of quaternions, there can, however, be a
deficiency in the practical considerations.
‘Quaternion o
| Quaternio Real Complex 5
q=(+(xJy + k) :
Imaginary 4 scalar varlables i
Dual Quaternion Real Dual-Part ;
e |
Dual-Operator _ ;
r_ 8 scalar variables |
Figure 2: Visual Overview of Quaternion and Dual-Quaternion Components.
An overview of both the quaternion and dual-quaternion a=(w,x,y,z)=(w,v) 2

components is shown in Figure 2. While a quaternion
consists of four scalar values, a dual-quaternion consists of
eight scalar values. However, a quaternion can only
represent rotation, while a dual-quaternion can represent
both rotation and translation.

Dual-quaternions are a valuable tool that can be added to
an individual's library to achieve a particular task, e.g.,
rigid hierarchy concatenation, interpolation, character
skinning. They operate similar to existing methods (i.e.,
matrices) and can be transformed to and from other forms
easily (i.e., quaternions, matrices) which enables them to
be integrated or exchanged with little disruption into a
system to gain their rewards. For a beginners introduction
to dual-quaternions with an emphasis on comparison
between diverse methods (e.g., matrices and Euler angles)
and how to go about implementing a straightforward
library we refer the reader to the paper by Kenwright [3].

Quaternion Algebra

While walking with his wife in 1843, Sir William
Hamilton [5] gave birth to a revolutionary new concept
that later became known as Quaternions. While it took
some time for quaternions to be accepted, they eventually
demonstrated themselves as being the most competent,
memory efficient, ambiguity-free method of representing
rotations. Furthermore, since quaternions are the
foundation upon which dual-quaternions are built it comes
as no shock, and is quite understandable, that these
properties are inherited. Nevertheless, to ensure the reader
is truly able to understand the potential of dual-quaternions

Ben Kenwright (bkenwright@xbdev.net)

(October 2012)

The fundamental mathematical operations are defined for
guaternions (i.e., addition and multiplication of quaternions
and the multiplication of a quaternion by a scalar).

Quaternion from Axis-Angle

Given an angle and axis of rotation, we can construct a
quaternion using Equation 3.

q=("°{§]‘ ﬁsm@j

or 3

=C0s 4 =n_sin 4 =n,sin 9 =n,sin 9
q, = z'qx_x z'qy_y 2'q1_z 5

where @is the angle and A is a unit-vector representing
the axis of rotation.

While it is recommended that you consistently use
quaternions for rotation, we can, however, rewrite
Equation 3 to give us the axis-angle from the quaternion to
aid in visualizing angle-axis differences as shown in
Equation 4.

0=2cos™(q,)

AL L 4

EORTain

pp 2-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

In practice, if you do decide to convert to the axis-angle
representation, you should ensure the quaternion is always
a unit-quaternion and be aware of the divide by zero

causality that may occur (i.e., sin (g) is zero).

Quaternion Vector Transformation

The quaternions transformation can be applied to a 3D
vector coordinate by means of multiplication. Whereby, to
transform a vector position by a quaternion we simply
convert the vector to a quaternion (i.e., the imaginary part
is the vector position, and the scalar real part zero) and
multiply it by the quaternion transform and its conjugate,
as shown in Equation 5. Optionally, we can convert the
quaternion transform to a matrix with little or no extra
work for systems that operate with matrices (e.g.,
transforms are done on the GPU using matrices).

] A~ AL
P =4pq >
where
e (is a unit-quaternion representing the rotation
transform
d’l is a unit-quaternion that represents the inverse
of the rotation quaternion
p is the 3D vector point in quaternion form (i.e.,
p = (O,V) Wlth V= (Vx’vy’vz))
p' is the 3D transformed vector point in
guaternion form (i.e., p'=(0,Vv))
However, it is extremely important to note that for a unit-
quaternion the inverse is the same as the conjugate. This is
due to the mathematical and computational efficiency by
which the conjugate is calculated. The conjugate of a

quaternion is simply the negation of the vector component
(shown in Equation 6).

0" =q =W-v) 6

Quaternion to Matrix

Due to the popularity of matrices, it is vital to be able to
transform a quaternion to matrix form and vice-versa. A
guaternion can be transformed to a matrix using little more
than multiplications and additions as shown in Equation 7.

1-2(y?+2%) 2(xy+zw) 2(xz+yw)
M, =| 2(xy+zw) 1-2(x*+2°) 2(yz+xw) 7
20xy+yw) 2(yz+xw) - 1-2(x+y?)

where Mq is a matrix equivalent of the quaternion g, and
X, Y, Z and w represent the elements of the quaternion.

Quaternion Addition

Adding two quaternions together is accomplished by
simply summing the individual components together as
shown in Equation 8.

Ben Kenwright (bkenwright@xbdev.net)

(October 2012)

qO +q1 = (qOW +qlw' qu +q1x' qu +q1y’ qu +qlz) 8

Quaternion Multiplication

Quaternion multiplication is analogous to matrix
multiplication; whereby, multiplying quaternions together
is equivalent to combining their transforms. For example,
when two quaternions are multiplied together it is
equivalent to the first quaternion being rotated by the axis
and angle of the second quaternion. However, quaternion
multiplication is non-commutative (i.e.,, order of
multiplication matters) but can be simplified by being
represented using the dot and cross product (shown in
Equation 9).

Q0% = (Ao +9u0)(Gy + A1)
(qwoqwl qu c'Ivl) + (qwoqvl + qlevD +qv0 ><qvl)

where g, and q,, represent the real scalar components of
each quaternion and, qg,,and q,,represent the vector
component of each quaternion.

Quaternion Difference

Since each quaternion represents an axis-angle, then
multiplying two quaternions together is equivalent to
transforming one quaternion by another. Hence, it should
be obvious, that we can use this to determine differences
between quaternions. If both quaternions are the same, and
we multiply one by the inverse of itself, it will cancel out
(see Equation 10) and give us an identity quaternion.

AL —

qq 10

So if we have two quaternions, we simply multiply one by
the inverse to get the difference between them (Equation
11). It is vital to remember that the inverse of a unit-
guaternion is the same as the conjugate.

quiff = QAQB_l 11

For example, a simplified numerical example of the
difference between two quaternions is shown in Equation
12.

, <0,0 1>sm((2)D: <1,0,0,0>

j <0, 01>3|n(D: <0,0,0,1>
2 12

QB :qB =<0,0,0,-1>
Ggr = 6,05 " =< (1)(0)-(0,0,0)-(0,0,-1),
(1)(0,0,~1) +(0)(0,0,0) +(0,0,0) x (0,0,~1) >
=<0,0,0,-1>
Ggig 10 =7, 1 =<0,0,-1>

/,_\/_.\
N\N

To help visualize the result for the example in Equation 12,
imagine comparing the difference between two scalar
numbers A and B (e.g., 0 and n). Then the difference, A-B

pp 3-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

= (0 - n) = -n, which is analogous to what we calculated in
the example.

Quaternion Spherical Linear Interpolation (SLERP)

Quaternion spherical linear interpolation is the
transformation along the surface of the 4D unit-
hypersphere.

Starting with the well known exponential function from
complex numbers it can be shown that in Equation 13.

e’ =cos@+isind 13

Then we can equate our quaternion and represent it as an
exponential given by Equation 14.

q=e" =cosQ+vsinQ 14

where Q= g and Vv is a unit vector (noting that v> = —1).

We can then write the quaternion in the form (Equation
15):

' =cos(tQ) + Usin(tQ) 15
Then the Slerp expression is given by Equation 16.

SLERP(qo’ G, :t) =0, (Q(Jilql)t 16

For example, let us consider two very simple cases when
t=0 and t=1

t=0
q' = cos(tQ) + vsin(tQ)
q° = cos(0) + vsin(0)
q’ =1
o (G ™)' = (0 ",)° =) =
and
t=1
q' = cos(tQ) + vsin(tQ)
q' = cos(Q) + vsin(Q)
Go (G 0)" = o (G ") = (0ot)G = W)y =,

An alternative, and more popular, representation of
Equation 16 can be calculated using a geometric approach
and is shown in Equation 17 (for a more detailed
description see Shoemake [1]).

sin((1-1)0)
sin(0)

N sin(to)

SLERP(q.,q, :t) =
(G G, - 1) ° " sin(@)

17

Dual-Number Theory

Clifford [6] published his intriguing work on dual-numbers
in 1873, and provided us with a powerful tool for
facilitating the analysis of complex systems (e.g.,
mechanical, geometric). In fact, it was not long before
they found a place in the movement of rigid bodies [7][8]
and later in geometry [9]. The relevant formalism that was

Ben Kenwright (bkenwright@xbdev.net)

(October 2012)

developed and what we primarily make use of in this paper
is the screw calculus that allows the unification of
translation and rotation.

The definition and properties of a dual-number are given in
Equation 18. Dual-numbers are akin to complex numbers.
However, whereas complex numbers have a real-part and
an imaginary-part and dual-numbers have a real-part and a
dual-part.

z=r+&d with £2=0 but £=0 18

where ¢ is known as the dual-operator, r is the real-part
and, d the dual-part.

Dual-Number Addition

(ry+ed)+(ry+edg)=(r,+r) +&(d, +dg) 19

Dual-Number Multiplication
(r,+&d,) (ry +£dg) = 1,1, +er,dg +er,d, +£°d ,dg

=1, +&(rdg +1,d,) (remembere* =0) 20

Dual-Number Division
(rA +gdA) _ (rA +5dA) (rB _gdB)
(rB +5dB) (rB +€dB) (rB _EdB)
_ Nl +(rgd, —rydg)e
(rs)?
:ﬂ+ rBdA_rAdB £
r,’ ry

21

Dual-Number Differentiation

From elementary calculus principles shown in Equation
22.
9 5(x) = lim SEF0 =5() 2
dx 5x—0 OX

We use Taylor series to find the differentiable (Equation
23).

f(ry)

f(ry+de)=f(ry)+ 3

(d,e)*+ (dpe)*+..

)y, F0)
u 2!

O
u

=f(r))+ f'(ry)d,e

=f(r)+ de+0+0+....

(as, €2 =0) 23

Remarkably, due to the condition & =0, we end up with
an extremely elegant solution.

For a more in-depth explanation of the rationale behind
dual-number theory see Keler [10] or Pennestr et al [11].

Dual-Quaternion Algebra

The dual-quaternion is an extension of dual-number theory
whereby the numbers for the dual-number equation are
represented by quaternions. Remarkably, the dual-
guaternion algebra that results is very straightforward and
elegant and provides us an algebraically compact and

pp 4-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

efficient system for solving otherwise complex problems.
For example, we can represent a rigid transforms with
eight scalar variables; we can combine transforms
effortlessly through concatenation, and we are able to
produce smooth constant interpolation between rigid
transformations. As shown in Figure 2, the dual-
quaternion is decomposed into two parts the real part and
the dual-part.

Dual-Quaternion Identity

The identity of a dual-quaternion is shown in Equation 24
and is analogous to a quaternion identity. Therefore, any
dual-quaternion that is multiplied with an identity dual-
guaternion remains unchanged. To define an identity dual-
quaternion we set the first scalar value to 1 and the other
seven scalar values are all 0.

¢=[10,0,0][0,0,0,0] 24

Dual-Quaternion from Position and Rotation

To construct a unit-dual quaternion from a rotation and a
translation we use Equation 25. We construct the dual-
quaternion from a pair of quaternions that represent the
rotation and translation.

g:qr+qd

qr:rl 25
=tr

0y >

where ris a unit quaternion representing the rotation and t
is a quaternion describing the translation. The individual
elements of the two quaternions from Equation 25 are
shown in Equation 26.

0 .0 .0 .0
r =[cos(§), nxsm(z), nysm(E), nzsm(E)] o8
t=[0t,t,t,]

where nis the axis of rotation, @is the angle of rotation,
andt,,t,,t, is the position in Cartesian coordinates.

For example, if we want to construct a dual-quaternion that
only has a rotation we have:

B 7] .0 .0 .0
S _[cos(E), nxsm(z), nysm(z), n, sm(E)][O,O,O, 0] 97

and, if we want to construct a dual-quaternion that only has
a translation we have:

_ tx ty tz 28
¢ =[10,0,0][0, ' 2]
Comparable to matrices and quaternions we can
concatenate dual-quaternion transformations using
multiplication. Hence, you can create a pure rotation dual-
quaternion and a pure translation dual-quaternion and
multiply them together to form a combined dual-

Ben Kenwright (bkenwright@xbdev.net)

(October 2012)

quaternion that possesses both the translation and rotation
components; however, be aware that the multiplication
order is important.

Dual-Quaternion to Position and Rotation

We can extract the position and rotation from a dual-
quaternion. In reverse to Equation 25 that created a dual-
quaternion from a position and rotation, we conversely
extract the position and rotation using Equation 29.

gzqr+qd
r=q, 29
t:2qd qr*

Dual-Quaternion Addition

The addition of dual-quaternions is one of the simplest
operations since we only need to add each individual
component together (see Equation 30).

ca=(a,+aji+a,j+ak)+(a, +aji+agj+ak)e

¢g = (b, +hyi+b, j+bk)+ (b, +bii+byj+b,k)e

Gatcs =((a +by)+(a, +b)+(a, +b,) +(a; +b;)) + 30
(@, +,) + (a5 +D;) +(a; +b) +(a; +b,))e

Dual-Quaternion Multiplication

Due to dual-numbers requiring &> =0 results in the
multiplication of dual-quaternions being a very neat and
tidy operation (see Equation 31). Hence, the resulting
dual-quaternion multiplication can be broken down into
three quaternion multiplications and a quaternion addition
operation.

ca=0y t 0
Gg =0, + (3¢
31
Gatcg = (qo +q15)(Q2 +q35)
= o0, +(0o0s +0,0,) ¢

Dual-Quaternion Conjugate

The dual-quaternion conjugate is essentially an extension
of the quaternion conjugate, and is given by Equation 32.

§ =q +eq 32

Dual-Quaternion Magnitude

A dual-quaternion multiplied by its conjugate gives the
magnitude squared and hence the square root of this is the
scalar magnitude length (see Equation 33).

lsl=yss 33

It is crucial to note that a unit dual-quaternion has a
magnitude of 1. Hence, we can say that the magnitude of a
unit dual-quaternion multiplied by its conjugate must equal
1.

pp 5-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

AAK

Igl=lge lI=1 34

Dual-Quaternion Vector Transformation

Equivalent to a quaternion a dual-quaternion can transform
a 3D vector coordinate as shown in Equation 34. Note that
for a unit-quaternion the inverse is the same as the
conjugate.

p'=¢ps 35
where
e ¢ isadual-quaternion representing the transform

. g’l is a dual-quaternion that is the inverse of the dual-
quaternion ¢

e p is a dual-quaternion representing the rigid
transform (e.g., 3D vector point
p=@0,0,00+&0yv,,v,v,))

e p'is adual-quaternion with the resulting transform.

Pliicker Coordinates

Plicker coordinates [12] are used to create Screw
coordinates which are an essential technique of
representing lines. We need the Screw coordinates so that
we can re-write dual-quaternions in a more elegant form to
aid us in formulating a neater and less complex
interpolation method that is comparable with spherical
linear interpolation for classical quaternions.

The Definition of Pliicker Coordinates:
1. pisa point anywhere on a given line
2. | is the direction vector
3. m=pxI isthe moment vector

4. (I,m)are the six Pliicker coordinate

We can convert the eight dual-quaternions parameters to
an equivalent set of eight screw coordinates and vice-versa.
The definition of the parameters are given in Equation 36.

screw parameters = (6,d, I,m)
dual —quaternion = g, + £q, 36
= (W, +V,)+e(W, +Vy)

where in addition to [representing the vector line direction
and mthe line moment, we also have d representing the
translation along the axis (i.e., pitch) and the angle of
rotation .

Converting to and from a dual-quaternion and its screw
parameters is shown in Equation 37 and Equation 38 (see
Daniilidis [13] for details).

Ben Kenwright (bkenwright@xbdev.net)

(October 2012)

dual — quaternion — screw parameters
-1
6 =2cos " (w,)

d =-2w, 1

37
- 1
I=v,
(Vr.Vr J

and

screw parameters — dual —quaternion

2
W, =cos| —
2

ol
v, =lsin| =
2 38

Dual-Quaternion Power

We can write the dual-quaternion representation in the
form given in Equation 39 (see Daniilidis [14] for details).

R 0+ ¢ed - .. (6+e&d
¢ =cos — + (1 +em)sin —

- A 39
0| . [0

=Cos| — [+ Vsin| —
2 2

e ¢ isaunit dual-quaternion

where

e Visaunitdual-vector ¥ =1+em
e Oisadual-angle §=0+ed

The dual-quaternion in this form is exceptionally
interesting and valuable as it allows us to calculate a dual-
guaternion to a power. Calculating a dual-quaternion to a
power is essential for us to be able to easily calculate
spherical linear interpolation. However, instead of purely
rotation as with classical quaternions, we are instead now
able to interpolate full rigid transformations (i.e., rotation
and translation) by using dual-quaternions.

N) .. (.0
& =cos| t= |+Vsin| t= 40
2 2

Dual-Quaternion
(ScLERP)

ScLERP is an extension of the quaternion SLERP
technique, and allows us to create constant smooth
interpolation between dual-quaternions. Similar to

Screw Linear Interpolation

pp 6-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

quaternion SLERP we use the power function to calculate
the interpolation values for SCLERP shown in Equation 41.

SCLERP(Z,, &, it) =8, (8,78,)!

where &, and &, are the start and end unit dual-quaternion
and t is the interpolation amount from 0.0 to 1.0.

The implementation of ScLERP involves first using
Equation 37 to convert the dual-quaternion parameters to
screw parameters, so we can calculate the power function
with Equation 40. Afterwards, we use Equation 38 to
convert back to a dual-quaternion to complete the
calculation and give the resulting interpolated result.

41

screw parameters = (6,d, I,m)
dual —quaternion =g, + &0, 42
= (W, +V,)+e(W, +Vy)

Basic Un-Optimized Implementation Steps of SCLERP (for

(For example, see Listing 1 for a practical implementation
example).

Alternatively, a fast approximate alternative to ScLERP
was presented by Kavan et al. [15] called Dual-Quaternion
Linear Blending (DLB). Furthermore, dual-quaternions
have gained a great deal of attention in the area of
character-based skinning. Since, a skinned surface
approximation using a weighted dual-quaternion approach
produces less kinking and reduced visual anomalies
compared to linear methods by ensuring the surface keeps
its volume (for example, see Figure 3).

Dual-quaternions eliminate skin collapsing artefacts and
while they are slightly slower than the linear blended
skinning method they are, however, graphical processor
unit (GPU) friendly. Furthermore, they are simple to
integrate into a 3D engine and cause very little disruption
since the same rigging as standard linear blending skinning
can be used.

Weighting
Weight A 1.0 10 10 10 10 07 05 03 00 0.0 0.0 0.0
0.0 00 03 05 07 10 1.0 Weight B
i ® o D (] ® o P O l.b ® o J (] ® D ¢ ® Iib
& R h l rrl
H A ’
i Transform g Transform i
A B '
® ® ® ® ® ® ®] ® ® -]
;\ ® ® o I R
\
y ARy L X
Transform ° Transform)
A 4 A o
il
Transform - Transform “»
B B
L] H‘
» e
T R w
\\\ - \\ -
Linear Dual-Quaternion

Figure 3: Visual comparison between linear and dual-quaternion weighting for vertex skinning.

Equation 41):
1. Calculate Inverse of A (i.e., Conjugate of A)
2. Multiply Inv(A) and B
3. Calculate Screw Parameters for result Inv(A)B
4. Calculate to the power of
5. Convert screw parameters form back to the

classical dual-quaternion form
Multiply with A to get the answer

Ben Kenwright (bkenwright@xbdev.net)

(October 2012)

Interpolation

In general, one of the greatest advantages of using
quaternions and dual-quaternions over any other method is
their ability to interpolate smoothly between transforms.
Naively, two values can represent the start and end, and a
scalar constant represents the interpolation amount (scalar
ratio is from 0.0 to 1.0). For a straight-line vector we can
treat each component separately and use a parametric
equation shown in Equation 43. This has the added
advantage of being computationally fast and simple.

pp 7-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

LERP(a,b:t)=b—(a—h)t 43

where a and b represent the start and end value and t the
in-between ratio.

In fact, for small changes we can use Equation 43 to
interpolate between quaternions and dual-quaternions.
However, as the quaternion and dual-quaternion become
more dissimilar there is a greater error and the intermediate
steps become less smooth and less correct. The
intermediate steps between the start and end do not
represent a unit-quaternion rotation or dual-quaternion
rotation. Hence, we need to re-normalize the value at each
step to ensure it falls on the unit-hypersphere. Most
importantly, though, is that the interpolation rate is not
constant. We can reduce the error and make the linear
interpolation approximation more tolerable by normalizing
the values between steps. This is known as Normalized
Linear Interpolation (NLERP) and has the added advantage
of ensuring that the intermediate values are always of unit-
length (see Equation 44). Again, it should be stressed that
the linear interpolation approximation is only suitable for
small changes.

NLERP(qA,qB Zt) _ qA +(qB 'qA)t 44

119+ (g5 - gt]

where ais the start, b is the end and t is the interpolation
amount (i.e., 0.0 to 1.0).

While it has numerous problems for both quaternions and
dual-quaternions, it is computationally fast and easy to
implement and can, however, give reasonably good
approximations for small interpolations. The trouble is,
quaternions and dual-quaternions do not travel along
straight-line trajectories. However, we can use an
alternative interpolation method that follows the unit-
hypersphere sphere. This is accomplished by interpolation
along the unit-hypersphere to produce a constant and
smooth rate of change. Dual-quaternions can use the
exponential representation similar to quaternions to
generate an interpolation scheme to produce constant
smooth interpolation.

Shortest or Longest Interpolation Path

Contrary to popular belief, a quaternion and dual-
quaternion by default will not take the shortest path
between points when interpolated. This is because a
guaternion can represent the same orientation using two
different representations, and consequently a dual-
quaternion. This means that both quaternions and dual-
quaternions do not offer a unique representation of an
orientation or transformation (i.e., there are two). The
difference between the two representation becomes
apparent during interpolation and provide a method for
determining the shortest or longest path to be taken during
interpolation.

The interpolation direction can be calculated by examining
the angle between the two transforms. If the angle
between the two quaternions (or dual-quaternions) is

Ben Kenwright (bkenwright@xbdev.net)

(October 2012)

greater than % then the interpolation will take the "longest

path". We can detected easily in practice by taking the dot
produce of the two quaternions (for a dual-quaternion we
use the quaternion for the rotation). If the dot product is
less than zero then the longest path will be taken.
However, if we want to prevent the longest path from
being taken we simply negate all the elements for the
quaternion or dual-quaternion before interpolating.
Likewise, if we desire the longest path we can check that
the dot product is greater than zero before negating the
quaternion or dual-quaternion.

Catmull-Rom Spline-Based Interpolation

For irregular spaced key-frame data, we can exploit the
Catmull-Rom spline-based vector interpolation function
and dual-quaternions algebra as a method for generating a
unified, smooth, continuous trajectory path.

Eradication of the Square Root

We can optimize some operations by eradicating the
square root overhead. Since both quaternions and dual-
guaternions are normalized the same way as vectors (see
Equation 45), we can identify cases whereby an element is
multiplication with another element to cancel out the
square root.

q q

== 45
lall a-q

However, the multiplication of two quaternion elements
results in the square root being redundant. For example,
when we construct a matrix from a quaternion (as shown in
Equation 7) we multiply pairs of elements. This can be
used to cancel out the necessity to normalize the result as
shown in Equation 46.

ca - % 9 %9

qxq - -
" Juraa-q aq

Performance Comparison

It can be shown without difficulty that in general a dual-
quaternion takes less operations to compute a general
transform concatenation compared to a matrix (see Table
1).

46

Matrix4x4 : 64mult + 48adds
Matrix4x3 : 48mult + 32adds
DualQuaternion : 42mult + 38adds

Table 1: Computational cost of combining matrices and
dual-quaternions.

Furthermore, for rigid skeletal animations, the computation
of world space transforms in addition to the overhead cost
of transferring the data to the graphics processing unit
(GPU) can be noticeably better. For example, to transfer
the transforms to the GPU each frame a dual-quaternions
requires only eight floats compared to a 3x4 matrix that
requires twelve per joint.

pp 8-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

Inverse Kinematics

The conventional method for representing and

Computer graphics and interactive techniques. ACM
Press, pp. 245-254, 1985.

Concarating I ogeer n Nt syt s he 21 S -Usly e bty ool
Denawt-Hartenberg [16] matrix convention, a_nd while MMQCs,” Autonomous Robots, vol. 30, no. 4, pp. 399-425,
Wang and Ravani [17] proposed an alternative more 2011.
eﬁICI?nt forward recur_smn method _fOI’ Klnematlc [3] B. Kenwright, “A Beginners Guide to Dual-Quaternions:
equations, we propose using dual-quaternions, since they What They Are , How They Work, and How to Use Them
offer an analogous alternative that is numerically stable for 3D Character Hierarchies,” The 20th International
and computationally efficient. Dual-quaternions have Conference on Computer Graphics, Visualization and
shown promising results for providing singularity-free Computer Vision, no. June 26-28, pp. 1-10, 2012.
solutions for inverse kinematic (IK) problems with [4] Q. Ge, A. Varshney, J. P. Menon, and C. F. Chang,
nonlinearities [18]. It is clearly an advantage to use dual- “Double quaternions for motion interpolation,” in
quaternions for rigid hierarchies since each dual- Proceedings of the ASME Design Engineering Technical
quaternion can be concatenated easily, interpolated Conference, 1998.
smoothly and provide rigid transform comparisons [5] S. W.R. Hamilton, “On quaternions; or on a new system
effortlessly_ of imaginaries in algebra,” Philosophical Magazine and
Journal of Science, no. July, pp. 10-13, 1844.
Porting to Dual-Quaternion [6] W. Clifford, Mathematical Papers. London, Macmillan,
Converting an exiting matrix scheme to a dual-quaternion 1882.
system is straightforward since much of the operations [71 A. P. Kotelnikov, “Screw calculus and some of its
(i.e., concatenation of transforms) are done the same way. applications in geometry and mechanics,” Kazan (in
For example, the concatenation of transforms with a Russia), 1895.
matrices and dual-quaternions: [8] Leipzig, “Geometrie der Dynamen,” E. Study, 1903.
Matrix [91 L M. Yaglom, “A simple non-Euclidean geometry and its
physical basis,” Springer Verlag, vol. New York, 1979.
Mg = MMM, M, [10] M. L. Keler, “On the theory of screws and the dual
. method,” In Proceedings of A Symposium
Dual-Quaternion Commemorating the Legacy, Works, and Life of Sir
Robert Stawell Ball Upon the 100th Anniversary of “A
So3 = 50515253 Treatise on the Theory of Screws,” vol. July 9-11, 2000.
where the subscript represents the transform, while matrix [11] E. Pennestr and R. Stefanelli, “Linear Algebra and
. Numerical Algorithms Using Dual,” Multibody System
transform M, corresponds the dual-quaternion transform Dynamics, vol. 18, no. 3, pp. 323-344, 2007.
G, - However, unlike matrices, dual-quaternions provide [12] J. Plucker, “On a new geometry of space,” Philosophical
an additional repertoire of valuable functions to easily Transactions of the Royal Society of London, vol. 155, no.
compare and interpolate between transforms. 1865, pp. 725791, 1865.
[13] K. Daniilidis, “Hand-Eye Calibration Using Dual
Conclusion and Final Thoughts Quaternions,” The International Journal of Robotics
This paper has attempted to introduction the reader to the Research, vol. 18, no. 3, pp. 286-298, Mar. 1999.
practical potential of dual-quaternions and their advantages [14] K. Daniilidis and B.-C. Eduardo, “The dual quaternion
in solving kinematic problems (i.e., systems with rotational approach to hand-eye calibration,” Proceedings of the 13th
and translational properties). The fundamental features International Conference on Pattern Recognition, vol. 1,
and workings of dual-quaternions have been outlined. It pp. 318-322, 1996. . .)
has also been shown, that in general, they provide a [15] Eék.Ka.W‘“’ S"thC%Hmls’ J. tZér_a’ ?}f‘dlc 2(?0’7511”1;?1‘\‘&
] H N mnmg wi ua quaternions, n
f&r:sﬁ%?'tma’ggﬂ e{iﬂ:lent si:\?l?lltan?orusl;eprefc?tr;ttlirc])% ngr:g SIGGRAPH symposium on int_eractive 3D graphics and
translation) T games, vol. ACM Press, no. April/May, pp. 3946, 2007.
o o . [16] J. Denavit and R. S. Hartenberg, “A Kinematic Notation
In practicality, a dual-quaternion is a tool like any other for Lower-Pair Mechanisms Based on Matrices,” Journal
tool to be used to solve a problem. It is a novel and fresh of Applied Mechanics, vol. 22, no. June, pp. 215-221,
alternative to the de-facto method of matrices with 1955.
numerous benefits that can be integrated into a system with [17] L. T. Wang and B. Ravani, “Recursive computations of
little disruption or complication. It is hoped that the reader kinematic and dynamic equations for mechanical
after reading this paper will go forwards and implement a manipulators,” IEEE Journal of Robotics and Automation,
straightforward dual-quaternion class to enable them to vol. September, no. 3, pp. 124-131, 1985.
explore the potential and decide for themselves if they are [18] Y. Aydin and S. Kucuk, “Quaternion Based Inverse
the right tool for the job. Kinematics for Industrial Robot Manipulators with Euler
Wrist,” IEEE International Conference on Mechatronics,
References vol. July 3-5, pp. 581-586, 2006.
[1] K. Shoemake, “Animating rotation with quaternion
curves,” In Proceedings of the 12th annual conference on
Ben Kenwright (bkenwright@xbdev.net) (October 2012) pp 9-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

Appendix
Sample Dual-Quaternion Class Implementation

public class DualQuaternion_c
{

public Quaternion m_real;
public Quaternion m_dual;

public static readonly DualQuaternion c Identity = new DualQuaternion c();

public DualQuaternion c()
{
m real = new Quaternion(0,0,0,1);
m dual = new Quaternion(0,0,0,0);
}
public DualQuaternion c(Quaternion r, Quaternion d
{
m _real = Quaternion.Normalize(r);
m dual = d;
}
public DualQuaternion c(Quaternion r, Vector3 t)
{
m_real = Quaternion.Normalize(r
m dual = (new Quaternion(t, 0) *
}
public static float Dot (DualQuaternion c a, DualQuaternion c b)
{
return Quaternion.Dot(a.m real, b.m real);
}
public static DualQuaternion_c operator* (DualQuaternion_c g, float scale)
{
DualQuaternion_c ret = qg;
ret.m real *= scale;
ret.m dual *= scale;
return ret;
}
public static DualQuaternion_c Normalize(DualQuaternion_c g)
{
float mag = Quaternion.Dot(g.m real, g.m real);
Debug_c.Assert(mag > 0.000001f);
DualQuaternion ¢ ret = g;
ret.m _real *= 1.0f / mag;
ret.m dual *= 1.0f / mag;
return ret;
}
public static DualQuaternion_c operator +(DualQuaternion_c lhs, DualQuaternion_c rhs)
{
return new DualQuaternion c(lhs.m real + rhs.m real, lhs.m dual + rhs.m dual);
}
// Multiplication order - left to right
public static DualQuaternion_c operator *(DualQuaternion_c lhs, DualQuaternion_c rhs)
{
lhs = DualQuaternion c.Normalize(lhs);
rhs = DualQuaternion c.Normalize(rhs);

;

)
m real) * 0.5f;

return new DualQuaternion c(rhs.m real * lhs.m real,
rhs.m_dual * lhs.m real + rhs.m real * lhs.m dual);
}
public static DualQuaternion c Conjugate(DualQuaternion c q)
{
return new DualQuaternion c(Quaternion.Conjugate(g.m real),
Quaternion.Conjugate(g.m_dual));
}
public static Quaternion GetRotation(DualQuaternion c g)
{
return q.m_real;
}
public static Vector3 GetTranslation(DualQuaternion c q)
{
Quaternion t = (g.m_dual * 2.0f) * Quaternion.Conjugate(g.m_real);
return new Vector3(t.X, t.Y, t.Z);
}
public static Matrix DualQuaternionToMatrix(DualQuaternion c g)
{

q = DualQuaternion c.Normalize(q);

Matrix M = Matrix.Identity;

float w = g.m_real.W;
float x = g.m _real.X;
float vy = g.m_real.Y;
float z = gq.m_real.Z;

// Extract rotational information
M.M11 = w*w + x*x - y*y - z*z;

Ben Kenwright (bkenwright@xbdev.net) (October 2012)

pp 10-11

Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond

}

M.M12 = 2*x*y + 2*w*z;
M.M13 = 2*x*z - 2*w*y;

M21 = 2*x*y - 2*w*z;
M22 = w*w + y*y - X*x - z*z;
M23 = 2*y*z + 2*wrx;

ERERR

M.M31 = 2*x*z + 2*w*y;
M.M32 = 2*y*z - 2*w*x;
M.M33 = w*w + z*z - x*x - y*y;

// Extract translation information

Quaternion t = (g.m_dual) * Quaternion.Conjugate(g.m_real) * 2.0f;
M.M41 = t.X;
M.M42 = t.Y;

M.M43 = t.Z;
return M;

public static
DualQuaternion_c ScLERP(DualQuaternion_c from, DualQuaternion c to, float t)

{

}

// Shortest path
float dot = Quaternion.Dot (from.m real, to.m real);
if (dot < 0) to = to * -1.0f;

// ScLERP = ga(ga”-1 gb)"t
DualQuaternion_c diff = DualQuaternion_c.Conjugate(from) * to;

Vector3 vr = new Vector3(diff.m real.X, diff.m real.Y, diff.m real.Z);
Vector3 vd = new Vector3(diff.m dual.X, diff.m dual.Y, diff.m dual.Z);
float invr = 1 / (float)Math.Sqgrt(Vector3.Dot (vr, vr));

// Screw parameters

float angle = 2 * (float)Math.Acos(diff.m real.W);

float pitch = -2 * diff.m_dual.W * invr;

Vector3 direction = wvr * invr;

Vector3 moment = (vd - direction*pitch*diff.m real.W*0.5f) *invr;

// Exponential power
angle *= t;
pitch *= t;

// Convert back to dual-quaternion
float sinAngle = Sin(0.5f*angle);
float cosAngle = Cos(0.5f*angle);

Quaternion real = new Quaternion(direction* sinAngle,
cosAngle);
Quaternion dual = new Quaternion(sinAngle*moment+pitch*0.5f* cosAngle *direction,

-pitch*0.5f*sinAngle);

// Complete the multiplication and return the interpolated value
return from * new DualQuaternion_c(real, dual);

#if false
public static void SimpleTest ()

{

}

DualQuaternion c dgq0 = new DualQuaternion c(Quaternion.CreateFromYawPitchRoll(1,2,3),
new Vector3(10,30,90));
DualQuaternion_c dgl = new DualQuaternion_c(Quaternion.CreateFromYawPitchRoll (-1,3,2),

new Vector3(30,40,190));

DualQuaternion ¢ dg2 = new DualQuaternion c(Quaternion.CreateFromYawPitchRoll (2,3,1.5f)
new Vector3(5,20,66));

DualQuaternion ¢ dgq = dgq0 * dgl * dg2;

Matrix dgToMatrix = DualQuaternion_ c.DualQuaternionToMatrix(dqg);

Matrix mO Matrix.CreateFromYawPitchRoll (1,2,3) * Matrix.CreateTranslation(10,30,90);
Matrix ml = Matrix.CreateFromYawPitchRoll (-1,3,2) * Matrix.CreateTranslation(30,40,190);
Matrix m2 = Matrix.CreateFromYawPitchRoll (2,3,1.5f) * Matrix.CreateTranslation (5,20,66);
Matrix m = m0 * ml * m2;

#endif

}

// End DualQuaternion c

Listing 1: Dual-Quaternion Implementation Class (note, this version of the class was written for clarity a production ready version
could be optimised and made more compact).

Ben Kenwright (bkenwright@xbdev.net) (October 2012)

pp 11-11

