
Real-Time Physics-Based Fight Characters: The Fundamental Workings and Principles – Reinventing the Wheel

+e-mail: bkenwright@xbdev.net www.xbdev.net September 2012

Real-Time Physics-Based Fight Characters
 The Fundamental Workings and Principles – Reinventing the Wheel

Ben Kenwright+
 www.xbdev.net

Abstract

In this paper, we present a practical physics-based character system for interactive and dynamic environments. It uses a

number of straightforward, computationally efficient, and conditionally stable techniques to produce responsive,

controllable, and interactive character avatars. We describe different physics-based simulation techniques to produce

interactive animations and present a detailed description of pitfalls and limitations. For example, our system demonstrates

the fundamental principles of balancing, joint torque calculations, and mass-properties that we combine in an application

to show a controllable real-time character-character fight game. We also demonstrate the plausibility of our approach

through numerous important simulations to illustrate the robustness and advantage of our system.

Keywords: Character Animation, Balancing, Inverse Kinematics, Inverted Pendulum, Responsive, Real-Time, Avatar

1. Introduction

Generating real-time physics-based characters for interactive

environments is exciting and challenging [FVDPT01][ML10]

[KLK04][TGTL11]. The challenges include not only making the

characters respond realistically to unforeseen circumstances but

also to have the characters use their joint torques intelligently to

recover and behave in a natural life-like way. Typically, character

systems use animation libraries or simplified physics-based models

to produce realistic motions. Some of these solutions are propriety

owned or are complex to implement and difficult to customize to

new situations and character types (e.g., non-biped creatures). For

example, Euphoria [EUPH12], Havok [HAVO12], and HumanIK

[HIK12], provide commercial middleware runtime solutions for

creating believable, interactive character animations for games.

A real-time physics-based character system, at its heart, revolves

around the fundamental problem of control. Since the laws of rigid

body motion are well defined from classical mechanics [KM12],

we are able to construct articulated body characters that respond

and move realistically due to forces and torques. The problem is

determining joint torques for specific actions (e.g., jumping,

punching) while including feedback for balancing and realism are

all significant factors for making the physics-based character

system a viable usable solution for virtual environments, such as
games.

This paper describes a complete physics-based character system for

controlling a wide variety of articulated avatars in real-time

environments. The goal of this system is to produce physically

realistic results using a general and practical combination of

techniques. For example, we represent each character as an

interconnected set of rigid body links (see Figure 3-1) that our

system controls through forces to mimic real-world movements.

Our system allows the user to customize and tune parameters to

produce a wide range of diverse motions from a minimal amount of
data.

We evaluate and demonstrate our system by implementing a real-

time character-character fight game that allows us to show a variety

of interactive and controllable actions, for example, punching, and

kicking. In addition, we compare our system with a pure

interpolated solution with no-interactive physics-based feedback.

In conclusion, our results show how a dynamic character-system

can dramatically increase the realism and emersion factor of a game

while providing numerous added benefits (e.g., responding to
unpredictable situations realistically).

1.1. Motivation

The motivation for this paper is aimed at moving virtual game

characters away from traditional hard-coded inflexible key-frame

based techniques to more intelligent physics-based solutions.

Moreover, we focus on a practical and realistic real-time method

that can be implemented and demonstrated using current hardware

technology for interactive environments, such as games; whereby,

virtual characters move realistically due to their joint torques and

are influenced by force disturbances, such as gravity.

1.2. Contribution

The contribution of this paper is the demonstration and explanation

of the creation of physics-based game characters. We use

uncomplicated 2D examples in conjunction with practical real-

world cases to show the reader how they would go about building a

physics-based character animation system for real-time

environments, such as games. Furthermore, we demonstrate the

viability of our method by incorporating it into a real-time fight
game demo. In summary:

 Practical physics-based character system

 Demonstrate a character-character fight game

2. Related Work

Physics-based biped characters with responsive characteristics have

been investigated across numerous fields (e.g., computer graphics

and robotics). We discuss and explain some of the important

research in each field that has led to the creation of more dynamic
and interactive character solutions.

A. Computer Graphics

To begin with, Komura [KLK04] simulated reactive motions for

running and walking of human figures, while Zordan [ZH02]

simulated characters that reacted automatically to impacts and

smoothly returned to tracking. This work was later extended

[ZMCF05] for combining existing human motion capture data to

produce physics-based responsive motion segments that played for

varying force disturbances (demonstrated using a martial art test

bed).

2 | Real-Time Physics-Based Fight Characters: The Fundamental Workings and Principles – Reinventing the Wheel

Meanwhile, Shiratori [SCCH09] developed a novel controller that

could generate responsive balancing actions; while Tang [TPZZ06]

modified interactive character motions for falling with realistic

responses to unexpected forces; subsequently, McCann [MCP07]

presented a method for blending various motion capture segments

that emulated responsive character movements. Additionally,

Arikan [AFOB05] did similar work on generating how people

respond to being pushed around. While some controllers can

generate responsive motions, they can be robot-like and reparative.

However, Kenwright [KEN12b] extended Perlin's

[PG96][PERL95] earlier work on combining coherent random

noise with an intelligent physics-based model to produce more life-
like and non-repetitive character motions.

In the same way, a foot-placement model was presented by Singh

[SKR11] for reconstructing a character's motions. The research

focused on a simplified footstep model for simulating crowds by

means of circular foot support region approximations in local pelvis

space to generate foot position and orientation information.

Similarly, Wu [WM08] presented a method for controlling

animated characters by modifying their foot placement information

so that it was physically correct. Furthermore, Kenwright

[KDM11] demonstrated a responsive inverted pendulum model

with an upper body postural feedback control system. This work

was later built upon to provide a more controllable model using an

approximate foot support area [KEN12b] similar to Singh's
approach [SKR11].

B. Robotics

Appreciating some of the relevant work in the field of robotics that

contributed to the development of responsive biped controllers, we

outline a few interesting and important papers. Shih [SGL93]

developed a straightforward model for enabling characters to

respond to small disturbances; while Stephens [STEP07] and Pratt

[PCDG06] developed controllers that could generate motions for
recovering from a range of push disturbances.

3. System Overview

The overall system is composed of numerous small and simple

pieces that when combined presents us with a powerful, flexible

and controllable character-based system with interactive and
dynamic properties. The main pieces of our system are:

 Character Structure (i.e., Links, Angles)

 Physical Properties (i.e., Masses, Sizes)

 Poses (i.e., Standing, Punching)

 Torques and Forces (i.e., Integration)

Furthermore, we discuss and examine various sub-details, such as

handling uneven terrain, balancing, stability, strength, and joint
limits.

We include feedback to ensure postural upright standing and

walking are able to work on un-even terrain and dynamic situation

such as walking up and down a slope. We present a number of

visualizing techniques to help the developer identify issues and

limitations through graphical feedback information. For example,

inverted pendulum wheel (number of steps, step size and angle,

small steps, big steps), angular limits for the inverse kinematic

solver.

Figure 3-1: (a) Skeleton model, and (b) Tree Hierarchy.

Since our character's model was constructed from articulated rigid

body links, it would automatically react appropriately to hits and

punches. For example, having the character's posture respond

appropriately to disturbances, such as being punched in the

stomach, feet sliding due to being pushed, and mimicking a real-

world human reaction.

Figure 3-2: Illustrating the character's limb lengths and masses.

4. Character Structure

As shown in Figure 4-1(a) our character is a set of interconnected

rigid links. We connect the links in a hierarchy formation with

each joint having a child-parent relationship and the foot or pelvis

as the root-base. We store each joint's orientation relative to its

parent. For the simple 2D biped shown in Figure 4-1(b) we have

10 separate joint angles. The joint angles are placed in a single

vector matrix (see Figure 4-1(c)) to make it easier to manage and
manipulate.

Figure 4-1: (a) Character modeled as a connection of rigid

bodies. (b)-(c) The decomposition of the character joints' and

their matrix representation.

The joint angles updated on a frame-by-frame basis. Hence, we
specific a set of variables for each link, which are:

 Link sizes and dimensions (constant)

 Joint limits (i.e., min/max threshold) (constant)

 Joint angles (e.g., Figure 4-1(c))

The parameters can be customized to create a crowd of different

character types (e.g., short, fat, thin) simply by modifying the array

of constants (e.g., link lengths, limits). The default root of the

Skeleton Hierarchy

root

(a) (b)

L = M=

l 0

l 1

l 2

l
3

l 4

l
5

l
6

l
7

l
8

l 9

l
10

m 0

1

2

3

4

5

6

7

8

9

10

m

m

m

m

m

m

m

m

m

m

0

1

2

3

4

5

6

7

8

9

10

=

(c) (b) (a)

Real-Time Physics-Based Fight Characters: The Fundamental Workings and Principles – Reinventing the Wheel | 3

character hierarchy was the left foot (see Figure 3-1). However, on

the fly, we could change the root to either the pelvis or the right

foot based on the situation; for example, which foot was the support

foot or if the character were not in contact with the terrain, we
would make the pelvis the root.

4.1. Mass Properties

The default mass properties for our biped character were based on

real-world statistical models of the human body by Clauser
[CMCY69] and Dempster [DG67].

For example, we assumed the default total body weight was
approximately 60kg for the ratios in Table 1.

Head +Trunk 52.2%

Arm 3.2%

Forearm 2.1%
Hand 0.8%

Thigh 10.9%

Shank 4.7%
Foot 1.8%

Head 8%

Body 28%

UpperArm 17.4%
LowerArm 15.7%

Hand 10%

UpperLeg 23%
LowerLeg 25%

Foot 3.7%

Table 1: An approximate human male's body weight proportions.

For example, we show how the individual limbs are constructed

from rigid body rectangles to represent the individual components
of our articulated character model in Figure 4-2.

Figure 4-2: (a) Character interaction with each limb having its

own mass, inertia properties, and contact information; (b) Sum of

the individual rigid body limbs contribute to an overall set of

information for balancing and stepping.

We calculated the total centre of mass position by summing the

individual joint centre of mass positions and dividing them by their
total mass as shown in Equation 4-1.

k k

k
total

k

k

m COM

COM
m





 4-1

where
totalCOM represents the position of the total centre of mass,

km is the mass of link k, and kCOM is the position of the centre of

mass of link k.

Figure 4-3: Example default masses and lengths.

5. Key-Poses (Control-Poses)

We use a number of key-poses (also known as control-poses) so the

player can make the avatar perform a wide range of actions. Each

key-pose consists of an array of joint angles (e.g., see Figure 14-2).

We calculate the joint torques for the rigid body skeleton so that it

achieves the selected key-pose. We calculate the joint torques

using a proportional derivate (PD) feedback controller (see later
section for details).

The repertoire of action poses for our fight characters are: (see also
Figure 14-1 and Figure 14-2)

 Stand

 Kick

 Jab-Punch

 Protect

 Upper-Punch

 Kick

 Duck

 Jump

 Step-Back

 Step-Forward

 Lean-Back

 Lean-Forward

Alternatively, for a complicated character model with a greater

number of degrees of freedom (DOF) (e.g., 3D), the repertoire of

actions would ideally be taken from a database (e.g., motion
capture animation library).

6. Foot

The foot is an important part of characters stepping movement and

believability. However, the feet were added as a pure cosmetic

afterthought. To ensure the feet reacted and moved realistically we

used a spring-damper connection (as shown in Figure 6-1). Hence,

the orientation angles' for the feet was calculated at run-time, and

the array of joint angles had no influence. Moreover, as the feet are

lifted and placed upon the ground, they move and respond

appropriately to mimic real-world characters stepping.

Figure 6-1: Foot ground interaction is emulated with a spring-

damper connection.

6.1. Interpolation (Linear, Bezier Curve, Quaternion)

Creating life-like stepping motions makes the character more

believable and life-like, while helping to maintain the connection

between the player and the avatar. Artefacts, such as slipping and

floating can break this connection and produce unnatural and

bizarre movements. Hence, we generate foot placement

information for balancing and locomotion and combine them with

with Bezier splines to create smooth natural-looking stepping
transitions.

Figure 6-2: Foot stepping trajectories are calculated using Bezier

curves so they appear more natural, (a) trajectory paths for a

simple forward step, and (b) blended motions following the

trajectory.

7. Proportional Derivative (PD) Controller

The proportional derivative controller [TLT11] (also known as an

angular spring) is the method; we use to generate joint torques. We

have the current pose, and the desired pose. This enables us to

Inertia
COM

Contact
Centre of Mass(COM)

for each rigid body

Total Centre of Mass (TCOM)

Projected Centre of Pressure (COP)

Forces

(a)
(b)

body 470 15710

head 190 7910

upper-leg 390 10050

lower-leg 550 3510

upper-arm 300 2180

lower-arm 430 1830

 (with hand)

foot 125 1110

Lengths

(length in millimetres, mass in grams)

Mass

L =

470

470

390

550

300

430

125

390

550

300

430

M=

7910

2180

1830

10050

1110

3510

10050

3510

10050

2180

1830

(a) (b)

4 | Real-Time Physics-Based Fight Characters: The Fundamental Workings and Principles – Reinventing the Wheel

calculate the error. The error is used to calculate the joint torque.

The error is combined with a spring constant and a damping

constant to control the stiffness and strength of the joint.

In conjunction with the set of constants that specify limb sizes and

limits, we also specify a set of joint spring and damping

coefficients. The PD coefficients determine how responsive and

fast a character is to achieving a specific pose. For example, very

low spring constant with a high damping constant would produce a

very slow and stiff character. The conventional PD controller used
in the majority of numerical simulations is given in Equation 7-1.

 ()c d p dq q k qk    7-1

where ,c dq q are the current and desired orientation, q is the

current angular velocity, and ,p dk k are the proportional and

derivative gain constants respectively.

We can create an assortment of character movements from a single

model by specifying different coefficient gain constants. However,

as shown in Figure 7-1 they can produce stiff, oscillatory, jittery,
and even highly undesirable unstable movements.

Figure 7-1: (a) under-damped, and (b) over-damped proportional

derivative convergence response.

For simple systems with one or two links (e.g., Figure 7-2) we can

easily calculate the damping coefficients to produce a desired

response (e.g., critically damped). However, for more complicated

system structures with multiple interconnected joints, we need to

use an iterative approach in conjunction with human intervention to

find the coefficients. While we ideally desire a critically damped

system in practice, it is rarely obtainable. Hence, for our complex

character structure, we leaned towards a more over-damped

solution since it provided the most stable result while producing the

most natural-looking character movements.

Figure 7-2: Simple PD example to provide the angular responses

for Figure 7-1.

7.1. Toy Example

Exploring how the different masses, lengths, gain, and damping

coefficients affect a complex articulated structure is crucial. Since

the variables are responsible for the responsiveness and hence the

feel of the character's movement. As shown in Figure 7-3, we

experimented with rigid body link configurations to get a feel for

coefficient values and acceptable joint and force tolerances.

Figure 7-3: (a) Single linked chain inverse kinematic (IK)

solution that we dragged around with the mouse cursor to

experiment with the PD controller coefficients, and (b) character

rigid bodies' following the fixed key poses.

8. Semi-Explicit Integration

We used a straightforward and efficient integration method known

as the semi-explicit Euler method (also called symplectic Euler)
[HLW02] shown in Equation 8-1 and Equation 8-2.

Linear:

1

1 1

t t

t t t

dt
v v F

m

x x v dt



 

 

 

 8-1

where F is force, m is mass, v is velocity, x is position, t, t+1 is the
current and next frame, and dt is the time-step.

Angular:

1

1
1

2

t t

t

t
t t t

dt

I

q q dt q

  








 

 

 8-2

where is the angular velocity, q is the orientation as a unit-

quaternion, I is the inertial, dt is the time-step, and t and t+1

indicate the current and next frame. We ran the simulation at a
fixed-frame time-step of 0.01s.

8.1. Constraint Enforcement

The revolute joint constraints were enforced between bodies

implicitly using a practical rigid body solver [KM12]. Since our

simulations were carried out in 2D, the computational cost of

generating and solving the constraint-based equations was minimal.

(While we opted for a custom constraint solver, alternatively both

open source and proprietary constraint based methods are available,

for example Open Dynamics Engine [ODE12] and Newton
Dynamics Engine [NDE12])

9. Implementation Details

We implementation the simulation experiments in C# on a 2.6Ghz

Intel Pentium CPU computer. We ran the simulation with a fixed-

size integration update of 0.01s (i.e., 100 Hz). To ensure the

physics simulation remained stable with the fixed frame time-step,

we clamped forces and torques to acceptable limits. This had the

affect of penalty forces not being strong enough to push objects

apart and allowed a small amount of penetration. We saw this as an

acceptable trade off and argued that the visual artefact mimics real

a world soft-body deformation. The editor and the character-

character fight simulation easily ran at interactive frame rates so it
was easy to customize and tweak motions and get instant feedback.

0 1 2 3 4

0

0.5

1.5

1.0

Time (minutes)
0 1 2 3 4

0

0.5

1.5

1.0

Time (minutes)

(a) (b)

error

current desired

(a) (b)

Real-Time Physics-Based Fight Characters: The Fundamental Workings and Principles – Reinventing the Wheel | 5

Figure 9-1: Desired and current pose using kinematic and

articulated rigid body skeleton.

9.1. Collision Detection

Collision detection is a central component of any physics-based

simulation. It allows rigid bodies to interact and engage one

another and their environment. Without it, objects would behave

like ghosts and pass through everything. Hence, to keep our system

as simple and as computationally fast as possible we used simple

geometric shapes (e.g., spheres, capsules, squares) to detect

collisions (i.e., contact points and penetration depths). We used

this collision detection information to apply separating penalty
forces to push objects apart.

9.2. Balancing

We use a collection of stored key-frame poses (e.g., kick, punch as

shown in Figure 14-2) to provide a controllable customisable

collection of interactive animations that the user can switch

between to make the avatar move. Furthermore, we include an

inverted pendulum (IP) feedback model [KKK*01] to add

intelligent balancing stepping information into the upright motions
so they appeared more plausible and life-like (see Figure 9-2).

Figure 9-2: Illustration of the spring loaded inverted pendulum

for stepping information.

The support region is the area of ground that is in contact with the

character. We usually represent this support region by the

character's foot (or feet). For slow or static motions, the overall

centre of mass position of the character has to be above this support

region to remain upright and balanced. Hence, we analyse the

current balancing situation by examining the position of the overall

mass of the rigid body skeleton and projecting it onto the support

region for the foot (or feet). If the overall mass is within this

support region, we assume the character is balancing; however, if

the overall mass goes outside the support region, we assume that

the character needs to take a corrective step to remain balanced.

We extend this elementary model for dynamic situations by

providing a more accurate balancing approximation. This

improved balancing approximation uses the overall linear velocity

of all the links to predict where the overall centre of mass position
will be at the next time-frame period.

The inverted pendulum (IP) model allowed us to predict the

character's foot placement position to counteract force disturbances

that would cause the character losing balance and falling over. We

accomplished this by modulating the fixed key-pose animation

angles with an inverse kinematic (IK) solution to produce less
repetitive and more natural stepping motions (see Figure 14-1).

10. Results

In this section, we describe some of the results from our physics-

based character fight simulation. Figure 14-1 and Figure 14-2

show screenshots of different poses and their corresponding angle

values. Screenshots of some character-character interactions are
shown in Figure 10-2.

The implementation of our physics-based character system is not a

small endeavour. While the basic system was constructed in a few

days, it took several weeks to implement a usable system with

various features (e.g., scripts, editor, IK solver). However, a fully-

fledged physics-based animation system is worth the investment

since it can create a diverse range of motions and character types

with little work (i.e., modification of coefficients in the scripts such

as strength, mass, and dimensions to create different walk types,
responsiveness).

In practice, stiff over-damped joint PD controllers presented a more

rigid and controllable character. Since the simulator ran at

interactive speeds, it was easy enough for the animator to modify

coefficients on the fly and get quick feedback on the resulting

effects. Once the animator obtained their desired animation effect,

they could save the coefficients to a script and reload them on
demand in the final game.

We did not incorporate any stability analysis into our system.

While in the majority of cases this was not a problem, but for

excessively abrupt forces and torques, it could cause instability

problems. To remedy this, and have the system recover gracefully,

it was a choice between having the time-step decrease or clamp and

dampen the forces and velocities. However, to maintain a real-time

frame-rate we opted for the latter, so sporadic forces were cut off

while damping ensured the system constantly lost energy and
converged on a static solution (i.e., did not oscillate forever).

Figure 10-1: Rigid skeleton links as capsules showing stance pose

and punch contact.

10.1. Performance

The frame-rate remained at a consistent 60fps, with the integration,

interpolation, balancing logic, and the calculation of joint torques

for two characters being calculated on average from ~0.01ms to
~0.05ms.

Figure 10-2: Character-character interaction (e.g., pushing,

hitting, kicking).

11. Limitations

While we have implemented a robust and flexible physics-based

character system, it does have a number of limitations. There can

Rigid Body Skeleton

Desired Predicted Pose

6 | Real-Time Physics-Based Fight Characters: The Fundamental Workings and Principles – Reinventing the Wheel

be cases when unnatural and seemingly impossible poses occur due

to the best guess selection of the current situation and the desired

action (e.g., character has been knocked over and needs to get up).

Furthermore, it can require arduous hand tuning of the numerous

parameters to make the character's overall movements meet a

desired style. We focused on upright biped characters that used a

very simple data set for key poses. In addition, while the general

system can accommodate diverse creature types it would require

additional animation poses and customisability of behaviours, such
as balancing and fight tactics.

We generated uncomplicated trajectory paths for stepping motions

while the majority of the information came from static key poses.

However, the characters can at times appear static and robot-like.

One possible way to reduce this problem and to improve a

character's believability is to inject coherent random movement into

the physics-based model to make the characters appear more life-
like and unique [KEN12a].

12. Conclusion

In this paper, we have demonstrated an approach for creating a

physics-based character system for interactive virtual environments

such as games. For example, we implemented a biped fighting

game to show the potential of our approach. While our game and

character simulations were 2D and possessed only a few degrees of

freedom with a limited repertoire of actions, it demonstrated the

ingenious potential and possibility of using an intelligent dynamic

based system instead of interpolating hard-coded key-framed
animation libraries.

While the focus of this paper was a practical physics-based

character system that could be used in a highly dynamic and

interactive environment, such as a fighting game, there are still a

number of attractive and exciting avenues for future work. For

example, expanding the available action repertoire for the fight

game (e.g., special moves), more intelligent AI, non-biped

characters (e.g., horses), 3D, terrain interaction, picking up objects
(e.g., struggling to pick up an axe or sword).

13. References

[AFOB05] O. Arikan, D. a. Forsyth, and J. F. O’Brien, “Pushing people

around,” Proceedings of the 2005 ACM

SIGGRAPH/Eurographics symposium on Computer animation
- SCA ’05, no. July, p. 59, 2005.

[CMCY69] Clauser C. E., McConville J. T., Young J. W. August (1969).

WEIGHT, VOLUME, AND CENTER OF MASS OF
SEGMENTS OF THE HUMAN BODY. Aerospace Medical

Research Laboratory, Ohio.

[DG67] Dempster W. T., Gaughran. G. R. L. American Journal of
Anatomy, Vol. 120, No. 1. (1967), pp. 33-54

[KLK04] T. Komura, H. Leung, and J. Kuffner, “Animating reactive

motions for biped locomotion,” Proceedings of the ACM
symposium on Virtual reality software and technology - VRST

’04, p. 32, 2004.

[ZH02] V. B. Zordan and J. K. Hodgins, “Motion capture-driven
simulations that hit and react,” in Proceedings of the 2002

ACM SIGGRAPH/Eurographics symposium on Computer

animation - SCA ’02, p. 89, 2002

[ZMCF05] V. B. Zordan, A. Majkowska, B. Chiu, and M. Fast, “Dynamic

response for motion capture animation,” ACM Transactions on

Graphics, vol. 24, no. 3, p. 697, Jul. 2005.

[SCCH09] T. Shiratori, B. Coley, R. Cham, and J. K. Hodgins,

“Simulating balance recovery responses to trips based on

biomechanical principles,” Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation

- SCA ’09, p. 37, 2009.

[TPZZ06] B. Tang, Z. Pan, L. Zheng, and M. Zhang, “Interactive

generation of falling motions,” Computer Animation and

Virtual Worlds, vol. 17, no. 3-4, pp. 271-279, Jul. 2006.

[MCP07] J. McCann and N. Pollard, “Responsive characters from motion

fragments,” ACM Transactions on Graphics, vol. 26, no. 3, p.

6, Jul. 2007.

[SKR11] S. Singh, M. Kapadia, and G. Reinman, “Footstep navigation

for dynamic crowds,” Animation and Virtual, 2011.

[WM08] C. Wu and J. Medina, “Simple steps for simply stepping,”
Advances in Visual Computing, 2008.

[SGL93] C. L. Shih, W. A. Gruver, and T. T. Lee, “Inverse Kinematics

and Inverse Dynamics for Control of a Biped Walking
Machine,” Journal of Robotic Systems, vol. 10, no. 4, pp. 531-

555, 1993.

[STEP07] B. Stephens, “Humanoid push recovery,” 2007 7th IEEE-RAS
International Conference on Humanoid Robots, pp. 589-595,

Nov. 2007.

[PCDG06] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture
point: A step toward humanoid push recovery,” in Humanoid

Robots, 2006 6th IEEE-RAS International Conference on,
2006, pp. 200–207.

[KDM11] B. Kenwright, R. Davison, G. Morgan, “Dynamic Balancing

and Walking for Real-Time 3D Characters,” Motion in Games,
2011.

[KEN12a] B. Kenwright, "Generating Responsive Life-Like Biped

Characters," The Third Workshop on Procedural Content
Generation in Games (PCG 2012), May 29th, p. 1-8, 2012

[KEN12b] B. Kenwright, "Responsive Biped Character Stepping: When

Push Comes To Shove," Cyberworlds, September 2012.

[PG96] K. Perlin and A. Goldberg, “Improv: A system for scripting

interactive actors in virtual worlds,” in Proceedings of the 23rd

annual conference on Computer graphics and interactive
techniques, 1996, pp. 205–216.

[PERL95] K. Perlin, “Real time responsive animation with personality,”

Visualization and Computer Graphics, IEEE Transactions on,
vol. 1, no. 1, pp. 5–15, Mar. 1995.

[FVDPT01] P. Faloutsos, M. van de Panne, and D. Terzopoulos,

“Composable controllers for physics-based character
animation,” in Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, 2001, no. 1, pp.

251–260.

[ML10] I. Mordatch and M. D. Lasa, “Robust physics-based locomotion

using low-dimensional planning,” ACM Transactions on

Graphics, 2010.

[TLT11] Tan J., Liu K., Turk G. "Stable proportional derivative

controllers," Computer Graphics and Applications

[TGTL11] Tan J., Gu Y., Turk G., Liu C. K. "Articulated Swimming
Creatures," ACM Transactions on Graphics, Vol. 30, No. 4,

Article 58, Publication date: July 2011.

[HLW02] Hairer E., Lubich C., Wanner G. "Geometric Numerical
Integration, Structure Preserving Algorithms for Ordinary

Differential Equations," Springer, 2002.

[KKK*01] Kajitas S., Kanehiro F., Kaneko K., Yokoi K., Hirukawa H.
"The 3D Linear Inverted Pendulum Mode: A simple modeling

for a biped walking pattern generation." In Proceedings of the

IEEE/RSJ International, Conference on Intelligent Robots and
Systems, (2001), pp. 239–246

[KM12] Ben Kenwright, Graham Morgan (2012), "Practical

Introduction to Rigid Body Linear Complementary Problem
(LCP) Constraint Solvers", In Algorithmic and Architectural

Gaming Design. pp. 159-205, 2012

[ODE12] Open Dynamics Engine, http://www.ode.org/ (accessed
September 05, 2012).

[NGD12] Newton Game Dynamics, http://www.newtondynamics.com/

(accessed September 05, 2012).

[HIK12] HumanIK, Autodesk Gameware,

http://gameware.autodesk.com/humanIK, 2012

[EUPH12] Euphoria, www.naturalmotion.com, 2012

[HAVO12] Havok, www.havok.com, 2012

Real-Time Physics-Based Fight Characters: The Fundamental Workings and Principles – Reinventing the Wheel | 7

14. Appendix

Figure 14-1: Simulation screenshot showing each element's mass

and the local angle offsets from the parent. (Note the angles are

not set in stone as they can be override and modulated with other

key poses, such as an inverse kinematic solution to provide more

natural results).

Figure 14-2: Some of the key poses for the fight character

simulation (i.e., stand, crouch, duck, punch, kick, splits, block).

Figure 14-3: Default biped character variable values.

1.586f
0.620f
2.004f
6.133f
5.309f
0.000f
4.477f
0.673f
2.016f
1.169f

=

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8 9

Can be overridden by leg

inverse kinematics (IK)

solver

1.364f
0.937f
2.536f
5.306f
5.288f
0f
3.180f
0.785f
2.782f
0.383f

0.592f
2.000f
1.697f
5.148f
5.302f
0.000f
3.249f
0.778f
2.655f
0.629f

2.230f
0.926f
2.590f
3.760f
3.360f
0.000f
3.202f
0.300f
2.782f
0.383f

0.998f
1.021f
2.134f
6.283f
5.284f
0.000f
5.019f
0.300f
3.379f
2.526f

1.073f
0.986f
4.800f
5.764f
5.359f
0.000f
3.160f
1.646f
3.047f
0.636f

3.000f
0.019f
0.242f
6.109f
4.842f
0.000f
3.212f
1.142f
2.771f
1.487f

1.299f
0.905f
4.801f
4.464f
5.500f
0.000f
4.205f
1.838f
2.716f
2.007f

L

llowleg
lupleg
lupleg
llowleg
lbody
lhead
luparm
llowarm
luparm
llowarm

=

0.41
0.45
0.45
0.41
0.67
0.39
0.43
0.3
0.43
0.3

= M =

mlowleg
mupleg
mupleg
mlowleg
mbody
mhead
muparm
mlowarm
muparm
mlowarm

=

35.10
100.50
100.50
35.10
157.10
79.10
21.80
18.30
21.80
18.30

k = p

150.5f
150.5f
350.5f
450.5f
20.5f
10.5f
1.5f
3.5f
1.5f
3.5f

k = d

5.5f
5.5f
5.5f
4.5f
2.5f
0.5f
0.5f
0.5f
0.5f
0.5f

1.5f
1.3f
2.3f
1.3f
max

1

max

1.2

max

1.2

range =
centre =

1.5f
1.3f
2.5f
5.0f
0
0
0
1.5f
0
1.5f

Link Lengths (metres) Link Masses (kilograms) Proportional Derivative Coefficients Joint Angle Limits (radians)

