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Figure 1: Exploratory parameter analysis in early prototype Julia sets of quadratic fractals with Dual-Quaternions.

Abstract
Fractals offer the ability to generate fascinating geometric shapes
with all sorts of unique characteristics (for instance, fractal geom-
etry provides a basis for modelling infinite detail found in nature).
While fractals are non-euclidean mathematical objects which pos-
sess an assortment of properties (e.g., attractivity and symmetry),
they are also able to be scaled down, rotated, skewed and replicated
in embedded contexts. Hence, many different types of fractals have
come into limelight since their origin discovery. One particularly
popular method for generating fractal geometry is using Julia sets.
Julia sets provide a straightforward and innovative method for gen-
erating fractal geometry using an iterative computational modelling
algorithm. In this paper, we present a method that combines Julia
sets with dual-quaternion algebra. Dual-quaternions are an allur-
ing principal with a whole range interesting mathematical possibil-
ities. Extending fractal Julia sets to encompass dual-quaternions
algebra provides us with a novel visualize solution. We explain the
method of fractals using the dual-quaternions in combination with
Julia sets. Our prototype implementation demonstrate an efficient
methods for rendering fractal geometry using dual-quaternion Julia
sets based upon an uncomplicated ray tracing algorithm. We show
a number of different experimental isosurface examples to demon-
strate the viability of our approach.
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1 Introduction
Geometric Properties of Complex & Dual Numbers Complex
numbers have a very elegant geometric interpretation. Specifically,
we can treat complex numbers as vectors in the complex plane. Ad-
dition and subtraction then follow regular rules of vector arithmetic,
while complex multiplication can be seen as scaling the rotation of
one vector by the magnitude and argument of another, respectively.
A dual number is a number of the form a+ bε, where a, b ∈ R and
ε is a non-real number with the property ε2 = 0. Dual numbers are
in some way similar to complex numbers a + bi, where i2 = −1.
You can imagine dual numbers as situated on the orthogonal line
centred at ‘a’ in the dual number plane. When treating dual num-
bers as vectors the modulus is evaluated as ||a + bε|| = abs(a)
because of the nilpotency [Wang and Yu 2010].

Dual-Quaternions Dual-quaternion have been around since
1882 [Clifford 1882] but has gained less attention compared to
quaternions alone. Comparable to quaternions the dual-quaternions
have had a taboo associated with them, whereby individuals avoid
quaternion and hence dual-quaternions [Kenwright 2012]. While

the robotics community has started to adopt dual-quaternions in
recent years, the computer graphics community has not embraced
them as whole-heartedly. Recent work which has taken hold and
has demonstrated the practicality of dual-quaternions in computer
graphics, some examples include: Kavan et al. [Kavan et al. 2008]
who demonstrated the advantages of dual-quaternions in charac-
ter skinning and blending. Frey and Herzeg [Frey and Herzeg
2011] extended Kavan et al.’s [Kavan et al. 2008] work with dual-
quaternions and qtangents as an alternative method for representing
rigid transforms instead of matrices. Giving evidence that the re-
sults can be faster with accumulated transformations of joints if the
inferences per vertex are large enough. Selig [Selig 2010] address
key limitations in computer games by examining the problem of
solving the equations of motion in real-time by putting forward how
dual-quaternion give a very neat and succinct way for representing
rigid-body transformations. Vasilakis and Fudos [Vasilakis and Fu-
dos 2009] discussed skeleton-based rigid-skinning for character an-
imation. Kuang et al. [Kuang et al. 2011] presented a strategy for
creating real-time animation of clothed body movement.

Algebra and Fractals Julia set of a function f is the set of all
points z in C such that f displays sensitive dependence at z. A
popular Julia set function, and the one we use in this paper, is
of the form f(z) = z2 + c for some constant c. In the two di-
mensional complex domain, a Julia set is produced using the it-
erative algorithm zn+1 = z2n + c, for a given complex number
c. The Julia set contains the initial complex values z0 for which
the system converges. There have been a number of publications
devoted to computational and graphical aspects of the Julia sets
[Ke and Panduranga 1990; Crane 2005]. including 3-dimensional
and 4-dimensional contexts to generate fractal geometry. In par-
ticular, modelling fractal geometries using quaternions is a well re-
searched topic in computer graphics [Pickover 1998]. Along similar
lines, Octonionic Julia sets have also been investigated in the liter-
ature from the computational and graphical point of view. Dual-
quaternions follow a regular set of arithmetic rules (for performing
common operations, such as, multiplication, addition and magni-
tude - see Appendix A and Figure 2). Extending the concepts de-
veloped for creating quaternion Julia sets, allows us to formulate
similar methods for dual-quaternion Julia sets.

Contribution The key contributions of this paper are: (1) process
for building dual-quaternion Julia sets; (2) graphical examples and
experiments.

2 Related Work
Quaternions to Dual-Quaternions Clifford [Clifford 1882]
published his intriguing work on dual-numbers in 1873, and pro-



Figure 2: Dual-Quaternion - Visual Overview of Quaternion and
Dual-Quaternion Components. To avoid confusion and enable the
reader to easily distinguish a quaternion from a dual-quaternion
we use two discernible symbols to identify them.

vided us with a powerful tool for facilitating the analysis of com-
plex systems (e.g., mechanical, geometric) [Kenwright 2012]. The
dual-quaternion is an extension of dual-number theory whereby the
numbers for the dual-number equation are represented by quater-
nions. Remarkably, the dual-quaternion algebra that results is very
straightforward and elegant and provides us an algebraically com-
pact and efficient system for solving otherwise complex problems
[Kenwright 2012]. Dual numbers are pretty similar to imaginary
numbers but there is one important difference. With imaginary
numbers, i2 = −1, but with dual numbers, ε2 = 0 (and ε is not
0), while this may seem like a small difference, it opens up a whole
interesting world of mathematical possibilities.

Fractal Geometry Generating a 4-dimensional version of com-
plex numbers are called quaternions. Alan Norton [Norton 1982]
was the first to demonstrate the application of the Quaternion Julia
sets made by displaying a 3D ‘slice’ of the 4D space. Quaternion
Julet sets is actually a projection from 4 dimensions to 3 dimen-
sions, akin to how a 2-dimensional square is a presentation of a
3-dimensional projection of a cube. Despite the added complexity,
it possesses an underlying smooth appearance (i.e., less interest-
ing fractal detail when you zoom in compared to the 2-dimensional
version). As we show in this paper higher-dimensional maths can
be used to create 3-dimensional Juliet set fractals. Daniel White’s
‘Mandelbulb’ [White 2007] takes a different approach. He took the
geometrical properties of the ‘complex plane’ where multiplication
becomes rotation and addition becomes movement of the plane in
a particular direction and applied them to a 3- dimensional space.
The concept allows the generation of striking visuals of how an ap-
parently simple process can lead to highly intricate sets. There are
numbers of preceding studies about properties of the fractals and
Julia sets and how to implement them in computer graphics [Crane
2005]. Similar to the existing results we ray-trace the interpolation
Julia set for making shading-reflecting like effect and apply the pro-
posed method into the stereographic projection of complex space to
obtain a kind of uneven and shaded surfaces.

3 Method
Julia Set Fractals Gaston Julia was the French mathematician
who made the exciting discovery of Julia Sets in 1918 [Mandelbrot
1983]. Julia sets are a popular fractal formed using formula itera-
tions. The Julia set is the union of all points z in an iterated complex
function f(z) that do not diverge as the number of iterations of the
function approach infinity (set of points form a ‘filled’ in volume).
Julia sets forms a boundary using the the filled-in set. There are a
large range of functions that encompass Julia sets, however, in this
paper, we employ the popular quadratic expression given in Equa-

Figure 3: Experimental - Exploring visual possibilities
through random parameters. Parameter constant value from
top left to bottom right: c=(-0.10,0.8,-0.26,0.15)(-023,-0.38,-
0.86,0.64); c=(-0.67,-0.54,-0.07,0.02)(0.06,-0.53,0.15,-0.27); c=(-
0.98,0.27,0.40,0.20)(-0.37,-0.41,-0.24,-0.34); c=(0.35,0.78,0.85,-
0.57)(-0.22,0.06,-0.46,0.05); c=(-0.17,-0.28,0.11,0.8)(0.06,0.44,-
0.66,0.06); c=(-0.04,0.95,0.4,-0.43)(0.09,-0.45,-0.27,-0.31).

tion 1

f(z) = zn+1 = z2n + c (1)

where z represents a variable of the form a + bi (a and b are real-
numbers with i an imaginary number). The value c is also a com-
plex number and is constant for each unique Julia. Hence, as each
value of c gives a different Julia set there are an infinite number
of sets. In an uncomplicated case, the value a + bi represents a
2-dimensional complex plane with each starting point z0 for the it-
erative series representing a pixel position. For each starting value
there are two possibilities for what will happen, either (1) as n in-
creases f(z) will tend towards infinity or (2) the value will stay
within a bounded value. Points which do not stay within the bound-
ing limit are said to be in the escape set, while all other points are
termed prisoners (prisoner set). The common boundary between
the escape set and the prisoner set is called the Julia set (defined for
a particular c).

Quaternion Julia Sets A quaternion is represented by two fun-
damental parts, a scalar real part (w) and an imaginary vector part
(x, y, z). We can extend the recursive Julia set algorithm given in
Equation 1 to use quaternions as given in Equation 3. However,
we need the squared quaternion, which is given in Equation 2. The
square of a quaternion is taken from previous quaternion geometric
research [Hart et al. 1989; Hart et al. 1990] with Julia sets (takes
advantage of the trigonometric properties of quaternions).

q = (~v, w) = (x, y, z, w)

q2 = (x2 − y2 − z2 − w2, 2xy, 2xz, 2xw)
(2)

The forward Julia iteration is given by Equation 3:

qn+1 = q2n + c (3)

Dual-Quaternion Julia Sets Dual-quaternion Julia sets is the
same as ordinary Julia sets except that dual-quaternions are used
instead of complex numbers. Generation of the fractal , the func-
tion ζn+1 = f(ζ) is iterated and if the series is bounded when n



Figure 4: Level of Detail - Trade-off between additional detail and computational cost - number of sample points and maximum iterations
(n) for determining if a point is inside or outside the Julia set.

tends to infinity then the dual-quaternion ζ0 belongs to the Julia set.

ζ = qa + qbε

ζ2 = q2a + q2bε
(4)

where a and b are the dual-quaternion parameters (i.e., real and
dual number represented as two quaternions). We apply Equation
2 to calculate the ‘squaring’ of each component and add the dual-
quaternion constant to achieve each forward iteration given by the
Julia Equation 5.

ζn+1 = ζ2n + c (5)

where ζ and c are dual-quaternions; n is the number of iterations,
typically between 6 and 15 (Figure 1 shows the impact of modifying
the number of iterations on the level of detail).

Practical Considerations Impossible to iterate each sample
point to infinity - hence, a suitable maximum iteration range is de-
fined. If the series has not reached the escape limit by then, the
point is considered inside the set. In practice, a fairly small num-
ber of iterations gives reasonably good results [Hart et al. 1989]
(e.g., less than 10). However, the more iterations the more accurate
the fractal surface. As shown in Figure 4, the more iterations and
the finer the resolution provide additional detail for the geometric
model at increased computational cost.

Dimension Reduction Dual-quaternion Julia sets are in 8-
dimensional space. How to visualize the dual-quaternion Julia set
in 3-dimensional space. We need to map the 8-dimensions into
3-dimensional space. There are two approaches: (1) render a sin-
gle 3-dimensional slice of the dual-quaternion space or (2) project
the dual-quaternion space onto 3-dimensions to see a 3-dimensional
shadow of the Julia set. The approach used in this paper is to inter-
sect the dual-quaternion space with a plane; essentially making five
of the dual-quaternion components (dimensions) constant values.

Ray-Marching Reduce the computational cost of testing every
point in the 3-dimensional space. Slow to generate a model of ac-
ceptable granularity in a reasonable space of time. For example, see
comparisons with a Voxel-based render shown in Figure 6. To offer
a fast and efficient visualization solution, we utilize a ray-marching
algorithm. The ray-marching algorithm is able to produce high-
quality detailed renders of the dual-quaternion Julia set at various
levels. We employ the distance estimation method for the Julia set
[Dang et al. 2002]. This distance estimator can be used to accelerate
the ray tracing process using unbounding volumes. The estimation
gives a lower-bound on the distance to the fractal from any given

point outside the fractal. While the Equation 6 provided an initial
approximation, we found the calculation from Hart et al. [Hart et al.
1989] given in Equation 7 provided more aesthetically pleasing re-
sults (and required less tweaking/tuning).

d ≥ α
(
|ζn|
|ζ′n|

)
|ζ′n| = 2|ζn+1||ζ′n+1|

(6)

where α is analogous to the grid size and typically has a small value
(e.g., ≤ 0.1). Once the lower-bound on the distance is known,
we are able to step along the ray until we hit the fractal or have
stepped to many times without hitting the fractal. An additional
optimization is to have rays intersect with a sphere encapsulating
the fractal first. This helps speed up the ray tracing algorithm to
quickly discard rays that would not intersect the fractal.

d ≥ 0.5
|ζn|
|ζ′n|

log(|ζn|) (7)

Figure 5: High-Detail - Emphasising detail within the dual-
quaternion Julia set geometry by using a larger number of itera-
tions. c = (-0.04,0.95,0.4,-0.43)(0.09,-0.35,-0.27,-0.31), n=15.



Lighting/Illumination Shading is an extremely important pro-
cess in creating a realistic and aesthetically pleasing image. As
we are rendering a 3-dimensional model, lighting is crucial to visu-
ally identify differences in geometric detail. We employ the Phong
model as it is straightforward and easy to incorporate into the ray-
tracing algorithm. However, the Phong model requires the surface
normals. We calculate a rough surface normal by sampling the sur-
rounding points (i.e., above, below, left and right). When a point in
the Julia set is found the four neighbouring points are also tested to
see if they are inside or outside the set. These points are required
for generating the neighbouring surface that allows us to compute
the surface normal (~n). We calculate the divergence at each pixel
by iterating several points with a small delta. While the slope at any
point on the surface of the Julia set is undefined, closer examination
of a points surroundings, for example scanned at higher iteration
and z-resolution, would reveal a different environment. An exact
normal can not be calculated, however the approximation using a
sample set of the surrounding points provides an acceptable surface
normal for our experiments. The Phone illumination calculation for
a single light is given below in Equation 8.

I = kaIa + kdId(~n ·~l) + ks(~r · ~v)s (8)

where I is the total illumination, k is the attenuation coefficient for
the object material (ambient, specular and diffuse), ~l is the vector
to the light, ~r is the reflected light vector (i.e., R = 2(~n(~n ·~l))−~l
), ~n is the normal vector at the object surface, ~v is the vector from
the eye point, s is the specular exponent, and Ia, Is, Id are the light
intensities.

Graphical Processing Unit (GPU) Fractal rendering has a high
computational costs and can be parallelised easily. For example,
Keenan [Crane 2005] demonstrated the generation of quaternion
Julia sets using a GPU for the ray-tracing algorithm (fragment
shader). We employ a similar approach with the ray-marching al-
gorithm on the GPU used to render the geometric surface of the
dual-quaternion Julia set.

4 Experimental Results
Parameter Tuning/Experimenting Figure 1 and Figure 7 show
some preliminary experimental results through parameter tun-
ing/changing. As shown in Figure 4, adjusting the maximum num-
ber of iterations and the in/out Julia set range allows us to capture
additional low-level details (i.e., at additional computational cost
and the moire effect due to the problem of too much detail in the
image/model). The simulations provide a strong correlation in style
and appearance to quaternion Julia sets (twirling candy floss ap-
pearance). While the dual-quaternion space has a clearly defined
sum, product and norm - the distance squared estimator in this
paper uses a quaternion calculation for the real and dual compo-
nents which means it still has a strong coupling to a 4-dimensional
space. Of course, this leaves the door open for further exploratory
work into other distance square estimator variations using dual-
quaternion algebra.

5 Conclusion/Discussion
In conclusion, fractals are a powerful tool for generating interesting
patterns. Extending the Julia set to higher dimensions allows us to
form shapes with strong stereoscopic properties which exhibit in-
tertwisting, irregular fringes and transformations. In this paper, we
employed dual-quaternion algebra to realize a 3-dimensional fractal
using the Julia set. When trying to capture the dimensional prop-
erties of dual-quaternions using Julia sets, we rendered snapshots
from different sample points. There is still lot to be discovered
about Julia sets in the dual-quaternion space. The rules defined by

Figure 6: Voxel vs Ray-Traced - Initial prototypes tried to utilize
Voxels on the GPU [Zadick et al. 2016] (i.e., geometry shader) - to
create a real-time prototyping tool for experimentation. However, a
ray-tracing algorithm was more suitable for emphasising detail due
to computational/resolution limits. Top ray-traced image, middle
50× 50× 50 voxel grid and bottom 100× 100× 100 voxel grid.

dual-quaternion algebra are applicable to Julia set to extend the con-
cept to multiple dimensions. Techniques for visualizing the higher
dimensional Julia set as a three dimensional object. We describe
our attempt to extend the already established technique of ray trac-
ing Julia sets to incorporate dual-quaternion properties. We also
discussed optimization algorithm for reducing computational times
through exploitation of the graphical processing unit (allowing for
exploratory prototyping). The scientific value of these images can
be questioned, but they possess aesthetic factors of fascination.
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A Appendix
Quaternion Operations The quaternions were discovered by
Hamilton in 1843 as a method of performing 3-D multiplication
[Kenwright 2012]. A quaternion q is given by Equation 9. Since
we are combining quaternions with dual number theory, we give
the elementary quaternion arithmetic operations.

q = [s,~v], (qw, qx, qy, qz) (9)

where s scalar part is s = qw and vector part is ~v = (qx, qy, qz).
The four-tuple of independent real values assigned to one real axis
and three orthonormal imaginary axes: i, j, k.

• addition: q1 + q2 = [s1, ~v1] + [s2, ~v2] = [s1 + s2, ~v1 + ~v2]
• additive identity: 0 = [0, 0]
• scalar multiplication: kq = [ks, k~v]
• multiplication: q1q2 = [s1, ~v1][s2, ~v2] = [s1s2−~v1 ·~v2, s1~v2+
s2~v1 + ~v1 × ~v2]

• multiplication identity: 1 = [1, 0]
• dot product: q1 · q2 = (q1xq2x + q1yq2y + q1zq2z + q1wq2w)

• magnitude: ||q|| =
√

(s2 + ||~v||2)
• conjugate q∗ = [s,−~v]

Dual-Quaternion Operations The elementary arithmetic opera-
tions necessary for us to use dual-quaternions.

• dual-quaternion: ζ = qr + qdε
• scalar multiplication: sζ = sqr + sqdε
• addition: ζ1 + ζ2 = qr1 + qr1 + (qd1 + qd2)ε
• multiplication: ζ1ζ2 = qr1 + qr2 + (qr1qd2 + qd1qr2)ε
• conjugate: ζ∗ = q∗r + q∗dε
• magnitude: ||ζ|| = ζζ∗
where qr and qd indicate the real and dual part of a dual-quaternion.


