
Technical Article, November 2014
Software Development (Metaballs & Marching Cubes: Blobby Objects and Isosurfaces)

Metaballs & Marching Cubes
Blobby Objects and Isosurfaces

Ben Kenwright

Abstract
Metaballs, also known as blobby objects, are a type of implicit modeling technique. We can think of a metaball as a particle
(i.e., a point-mass) surrounded by a density field, where the particle density attribute decreases with distance from the
particle position. A surface is implied by taking an isosurface through this density field - the higher the isosurface value,
the nearer it will be to the particle. The powerful aspect of metaballs is the way they can be combined. We combine the
spherical fields of the metaballs by summing the influences on a given point to create smooth surfaces. Once the field is
generated, any scalar field visualization technique can be used to render it (e.g., Marching Cubes). Marching Cubes is an
algorithm for rendering isosurfaces in volumetric data. The basic notion is that we can define a voxel(cube) by the pixel
values at the eight corners of the cube (in 3D). If one or more pixels of the cube have values less than the user-specified
isovalue, and one or more have values are greater than this value, we know the voxel must contribute some component to
the isosurface. Then we determine which edges of the cube intersects the isosurface and create triangular patches which
divides up the cube into regions to represent the isosurface. Then connecting the patches from all cubes on the isosurface
boundary allows us to create a surface representation.

Keywords
metaballs, 3d, 2d, marching cubes, isosurfaces, fluids, soft-bodies, particle, water, tessellation, volumetric data, field

Title: Metaballs & Marching Cubes: Blobby Objects and Isosurfaces

Contents

Introduction 2

1 Overview 2

2 Metaball Mathematics 2

3 Marching Cube Algorithm Details 2

4 Further Work 4

Acknowledgements 4

References 4

A Appendix 4

Introduction
What are metaballs? Metaballs are, in computer graph-
ics, organic-looking n-dimensional objects. The technique
for rendering metaballs was invented by Jim Blinn [1] in the
early 1980s. Metaballs largely made their introduction in the
1990’s through the demoscene: groups of enthusiastic pro-
grammers and artists that aimed to create graphical/musical
effects that pushed the known limits of older hardware, such
as the Commodore 64 and Amiga. The goal of demosceners
was to create audio-visual effects in real-time that would im-
press viewers and confound other demoscene programmers
with how the effect was implemented [2, 3]. The metaballs
effect gained popularity because of its squishy organic look
and feel.

What is the marching cube algorithm? Marching cubes
is a computer graphics algorithm, published in the 1987 SIG-
GRAPH proceedings by Lorensen and Cline [3], for ex-
tracting a polygonal mesh of an isosurface from a three-
dimensional scalar field (sometimes called voxels). This pa-
per is one of the most cited papers in the computer graphics
field. The applications of this algorithm has been applied
to multiple fields, including video games, medical visualiza-
tions, such as CT and MRI scan data images, and special
effects or 3-D modelling with what is usually called meta-
balls or other metasurfaces. An analogous two-dimensional
method is called the marching squares algorithm [2, 4].

Why do we need marching cube algorithm? In 3-
dimensional virtual environments and visualisation software,
we typically represent shapes and objects with triangles.
Hence, the ability to efficiently convert a set of points into a
triangular mesh is important. The marching cubes algorithm
is one such technique for rendering isosurfaces. The basic
notion is that we can define a voxel(cube) by eight pixel val-
ues for the eight corners of the cube. If one or more pixels of
a cube have values less than the user-specified isovalue, and
one or more have values greater than this value, we know
that the voxel contributes to the isosurface. By determining
which edges of the cube are intersected the isosurface, we can
create a triangular patch which divides up the cube between
the regions inside and outside the isosurface. Connecting the
patches from all cubes allows to formulate a triangulated rep-
resentation of the isosurface boundary surface.

Metaballs & Marching Cubes — 2/7

Examples Applications of metaballs and marching cubes:

4 fluid simulations (e.g., jugs of water and the sea, such
as, smoothed particle hydrodynamics)

4 soft-body systems composed of point-masses
4 x-ray data (i.e., large arrays of scattered points) [5]
4 procedural terrain
4 tessellation algorithms

1. Overview
This article will focus entirely on 2D and 3D metaballs and
isosurfaces. Although an isosurface generally refers to a 3D
space, we will show that it can very easily adapted to dif-
ferent dimensions. Simply for our purpose, an isosurface, is
a surface created by applying one or more functions to ob-
tain the scalar value for a position in space (for example, the
scalar strength of any point in a 3-dimensional potential field)
The different sections include:

• we discuss the concept and implementation of metaballs
and isosurfaces (i.e., cube marching algorithm)

• we examine the current applications of isosurfaces in the
video game and graphic industries

• we investigate the performance issues involved with iso-
surfaces, and some optimization and approximation en-
hancements

2. Metaball Mathematics
Scalar Potential Field Metaballs are described using the
implicit Equation 1 below:

k

∑
n=1

sn

||mn− p||g
> r (1)

where mn is location of metaball number n, sn is size of meta-
ball number n, k is number of balls, g ‘goo’-factor, which af-
fects the way how metaballs are drawn, r is the threshold for
metaballs, p is the place vector, and ||x|| indicates the mag-
nitude (length) of vector x.

Normals Metaballs are described by a force field, as shown
in Equation 1, so normal for any given point is easy to cal-
culate with the help of gradient, as shown below in Equation
2:

normal = ∇

k

∑
n=1

sn

||mn− p||g

=
k

∑
n=1

(−g)(sn)
mn− p

||mn− p||2+g

(2)

3. Marching Cube Algorithm Details
Concept There are two major components of the march-
ing cube algorithm. The first is deciding how to define the

section or sections of the surface which chops up an individ-
ual cube. If we classify each corner as either being below
or above the isovalue, there are ‘256’ possible configurations
of corner classifications. Two of these are trivial; where all
points are inside or outside the cube does not contribute to
the isosurface. For all other configurations we need to de-
termine where, along each cube edge, the isosurface crosses,
and use these edge intersection points to create one or more
triangular patches for the isosurface.

Figure 3. Concept 2D - Help visualize the concept of cube
marching in 2D.

Figure 4. Possibilities for 2D - Applying the technique to
a simple 2D example, shown in Figure 3, we can categorize
the different surface values for the 16 possible solutions.

Number of Possibilities If you account for symmetries,
there are really only 14 unique configurations in the 254 pos-
sibilities. When there is only one corner less than the iso-
value, this forms a single triangle which intersects the edges
which meet at this corner, with the patch normal facing away
from the corner. Obviously there are 8 related configurations
of this sort. By reversing the normal we get 8 configurations
which have 7 corners less than the isovalue. We don’t con-
sider these really unique, however. For configurations with 2
corners less than the isovalue, there are 3 unique configura-
tions, depending on whether the corners belong to the same

Metaballs & Marching Cubes: Blobby Objects and Isosurfaces

Metaballs & Marching Cubes — 3/7

Figure 1. Metaballs and Marching Cubes - Simple test case showing two metaballs (i.e., spheres with specific ratio) and
the generated implicit surface. (a) Two spheres, (b) grid resolution of 10x10, (c) grid resolution of 20x20, and (d) grid
resolution of 30x30.

Figure 2. Goo-Factor - Visual effect of varying the goo-factor, in Equation 1, (a) 0.9, (b) 1.0, (c) 1.5, and (d) 1.8.

edge, belong the same face of the cube, or are diagonally
positioned relative to each other. For configurations with 3
corners less than the isovalue, there are again 3 unique con-
figurations, depending on whether there are 0, 1, or 2 shared
edges (2 shared edges gives you an ‘L’ shape). There are 7
unique configurations when you have 4 corners less than the
isovalue, depending on whether there are 0, 2, 3 (3 variants
on this one), or 4 shared edges.

Figure 5. Grid Points - Displaying the grid sample points.
(a) 10x10, (b) 20x20, (c) 30x30, and (d) 60x60.

Weights Each of the non-trivial configurations results in
between 1 and 4 triangles being added to the isosurface. The
actual vertices themselves can be computed by interpolation
along edges, or default their location to the middle of the
edge. The interpolated locations will obviously give better
shading calculations and smoother surfaces.

Processing Now that we can create surface patches for a
single voxel, we can apply this process to the entire volume.
We can process the volume in slabs, where each slab is com-
prised of 2 slices of pixels. We can either treat each cube
independently, or we can propogate edge intersections be-
tween cubes which share the edges. This sharing can also
be done between adjacent slabs, which increases storage and
complexity a bit, but saves in computation time. The sharing
of edge/vertex information also results in a more compact
model, and one that is more amenable to interpolated shad-
ing.

Algorithm Steps An uncomplicated step-by-step imple-
mentation to create a marching cube isosurface based on a
linear grid, is:

1. construct a grid array (e.g., 3 dimensional array of dou-
bles)

2. using Equation 1 calculate the potential field value for
each point in the grid array (i.e., influence of each
metaball)

3. iterate through all the points constructing a cube region
(i.e.,x to x+1, y to y+1 and z to z+1)

4. for each cube region calculate the triangles

Metaballs & Marching Cubes: Blobby Objects and Isosurfaces

Metaballs & Marching Cubes — 4/7

4. Further Work
Once you understand the concept of metaballs and the march-
ing cube algorithm, you should be able to expand the concept
and create a range of exciting modifications:

2� Large number of metaballs floating around in real-time
2 Optimize for multi-threading and the GPU (e.g.,

OpenCL and CUDA)
2 Non-linear partitioning of the region
2 Tessellating the surface progressively (i.e., recursively

subdividing the voxels)
2 Apply ‘Smoothed Particle Hydrodynamics (SPH)’ to

the metaball movement in combination with the cube
marching isosurface calculations to create fluids

2 Move beyond ‘squares’ towards other shapes, for exam-
ple, tetrahedron marching - to generate the isosurface

Acknowledgements
We would like to thank all the readers for taking time out
of their busy schedules to provide valuable and constructive
feedback to make this article more concise, informative, and
correct. However, we would be pleased to hear your views
on the following:

• Is the article clear to follow?
• Are the examples and tasks achievable?
• Do you understand the objects?
• Did we missed anything?
• Any surprises?

The article provide a basic introduction to getting started
with metaballs and the cube marching algorithm. So if you
can provide any advice, tips, or hints from your own explo-
ration and development, that you think would be indispens-
able for a student’s learning and understanding, please don’t
hesitate to contact us so that we can make amendments and
incorporate them into future updates.

Recommended Reading
Level Set Methods and Dynamic Implicit Surfaces (Applied
Mathematical Sciences), by Stanley Osher, Ronald Fedkiw,
Springer, ISBN: 978-0387954820

Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin, ISBN: 978-0132350884

References
[1] James F Blinn. A generalization of algebraic sur-

face drawing. ACM Transactions on Graphics (TOG),
1(3):235–256, 1982. 1

[2] Stanley Osher Ronald Fedkiw. Level set methods and
dynamic implicit surfaces. 2003. 1

[3] William E Lorensen and Harvey E Cline. Marching
cubes: A high resolution 3d surface construction algo-

Figure 6. Terrain Cube Marching - Applying the cube
marching algorithm to a voxel terrain.

Figure 7. Marching Square (i.e., 2D Marching Cube) -
Different combinations.

rithm. In ACM Siggraph Computer Graphics, volume 21,
pages 163–169. ACM, 1987. 1

[4] André Guéziec and Robert Hummel. Exploiting trian-
gulated surface extraction using tetrahedral decomposi-
tion. Visualization and Computer Graphics, IEEE Trans-
actions on, 1(4):328–342, 1995. 1

[5] Bradley A Payne and Arthur W Toga. Surface mapping
brain function on 3d models. Computer Graphics and
Applications, IEEE, 10(5):33–41, 1990. 2

1. Appendix

Listing 1. Example implementation of the marching cube
algorithm.
1 typedef struct {
2 XYZ p[3];
3 } TRIANGLE;
4
5 typedef struct {
6 XYZ p[8];
7 double val[8];
8 } GRIDCELL;
9

10 /∗
11 Given a grid cell and an isolevel, calculate the triangular

Metaballs & Marching Cubes: Blobby Objects and Isosurfaces

Metaballs & Marching Cubes — 5/7

12 facets required to represent the isosurface through the cell.
13 Return the number of triangular facets, the array ”triangles”
14 will be loaded up with the vertices at most 5 triangular facets.
15 0 will be returned if the grid cell is either totally above
16 of totally below the isolevel.
17 ∗/
18 int Polygonise(GRIDCELL grid,double isolevel,TRIANGLE ∗triangles)
19 {
20 int i,ntriang;
21 int cubeindex;
22 XYZ vertlist[12];
23
24 int edgeTable[256]={
25 0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
26 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
27 0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
28 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
29 0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
30 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
31 0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
32 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
33 0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
34 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
35 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
36 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
37 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
38 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
39 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
40 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
41 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
42 0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
43 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
44 0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
45 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
46 0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
47 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
48 0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
49 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
50 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
51 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
52 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
53 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
54 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
55 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
56 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0 };
57 int triTable[256][16] =
58 {{−1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
59 {0, 8, 3, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
60 {0, 1, 9, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
61 {1, 8, 3, 9, 8, 1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
62 {1, 2, 10, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
63 {0, 8, 3, 1, 2, 10, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
64 {9, 2, 10, 0, 2, 9, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
65 {2, 8, 3, 2, 10, 8, 10, 9, 8, −1, −1, −1, −1, −1, −1, −1},
66 {3, 11, 2, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
67 {0, 11, 2, 8, 11, 0, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
68 {1, 9, 0, 2, 3, 11, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
69 {1, 11, 2, 1, 9, 11, 9, 8, 11, −1, −1, −1, −1, −1, −1, −1},
70 {3, 10, 1, 11, 10, 3, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
71 {0, 10, 1, 0, 8, 10, 8, 11, 10, −1, −1, −1, −1, −1, −1, −1},
72 {3, 9, 0, 3, 11, 9, 11, 10, 9, −1, −1, −1, −1, −1, −1, −1},
73 {9, 8, 10, 10, 8, 11, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
74 {4, 7, 8, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
75 {4, 3, 0, 7, 3, 4, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
76 {0, 1, 9, 8, 4, 7, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
77 {4, 1, 9, 4, 7, 1, 7, 3, 1, −1, −1, −1, −1, −1, −1, −1},
78 {1, 2, 10, 8, 4, 7, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
79 {3, 4, 7, 3, 0, 4, 1, 2, 10, −1, −1, −1, −1, −1, −1, −1},
80 {9, 2, 10, 9, 0, 2, 8, 4, 7, −1, −1, −1, −1, −1, −1, −1},
81 {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, −1, −1, −1, −1},
82 {8, 4, 7, 3, 11, 2, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
83 {11, 4, 7, 11, 2, 4, 2, 0, 4, −1, −1, −1, −1, −1, −1, −1},
84 {9, 0, 1, 8, 4, 7, 2, 3, 11, −1, −1, −1, −1, −1, −1, −1},
85 {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, −1, −1, −1, −1},
86 {3, 10, 1, 3, 11, 10, 7, 8, 4, −1, −1, −1, −1, −1, −1, −1},
87 {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, −1, −1, −1, −1},
88 {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, −1, −1, −1, −1},
89 {4, 7, 11, 4, 11, 9, 9, 11, 10, −1, −1, −1, −1, −1, −1, −1},
90 {9, 5, 4, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
91 {9, 5, 4, 0, 8, 3, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
92 {0, 5, 4, 1, 5, 0, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
93 {8, 5, 4, 8, 3, 5, 3, 1, 5, −1, −1, −1, −1, −1, −1, −1},
94 {1, 2, 10, 9, 5, 4, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
95 {3, 0, 8, 1, 2, 10, 4, 9, 5, −1, −1, −1, −1, −1, −1, −1},
96 {5, 2, 10, 5, 4, 2, 4, 0, 2, −1, −1, −1, −1, −1, −1, −1},
97 {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, −1, −1, −1, −1},
98 {9, 5, 4, 2, 3, 11, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
99 {0, 11, 2, 0, 8, 11, 4, 9, 5, −1, −1, −1, −1, −1, −1, −1},

100 {0, 5, 4, 0, 1, 5, 2, 3, 11, −1, −1, −1, −1, −1, −1, −1},
101 {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, −1, −1, −1, −1},

102 {10, 3, 11, 10, 1, 3, 9, 5, 4, −1, −1, −1, −1, −1, −1, −1},
103 {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, −1, −1, −1, −1},
104 {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, −1, −1, −1, −1},
105 {5, 4, 8, 5, 8, 10, 10, 8, 11, −1, −1, −1, −1, −1, −1, −1},
106 {9, 7, 8, 5, 7, 9, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
107 {9, 3, 0, 9, 5, 3, 5, 7, 3, −1, −1, −1, −1, −1, −1, −1},
108 {0, 7, 8, 0, 1, 7, 1, 5, 7, −1, −1, −1, −1, −1, −1, −1},
109 {1, 5, 3, 3, 5, 7, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
110 {9, 7, 8, 9, 5, 7, 10, 1, 2, −1, −1, −1, −1, −1, −1, −1},
111 {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, −1, −1, −1, −1},
112 {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, −1, −1, −1, −1},
113 {2, 10, 5, 2, 5, 3, 3, 5, 7, −1, −1, −1, −1, −1, −1, −1},
114 {7, 9, 5, 7, 8, 9, 3, 11, 2, −1, −1, −1, −1, −1, −1, −1},
115 {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, −1, −1, −1, −1},
116 {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, −1, −1, −1, −1},
117 {11, 2, 1, 11, 1, 7, 7, 1, 5, −1, −1, −1, −1, −1, −1, −1},
118 {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, −1, −1, −1, −1},
119 {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, −1},
120 {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, −1},
121 {11, 10, 5, 7, 11, 5, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
122 {10, 6, 5, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
123 {0, 8, 3, 5, 10, 6, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
124 {9, 0, 1, 5, 10, 6, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
125 {1, 8, 3, 1, 9, 8, 5, 10, 6, −1, −1, −1, −1, −1, −1, −1},
126 {1, 6, 5, 2, 6, 1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
127 {1, 6, 5, 1, 2, 6, 3, 0, 8, −1, −1, −1, −1, −1, −1, −1},
128 {9, 6, 5, 9, 0, 6, 0, 2, 6, −1, −1, −1, −1, −1, −1, −1},
129 {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, −1, −1, −1, −1},
130 {2, 3, 11, 10, 6, 5, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
131 {11, 0, 8, 11, 2, 0, 10, 6, 5, −1, −1, −1, −1, −1, −1, −1},
132 {0, 1, 9, 2, 3, 11, 5, 10, 6, −1, −1, −1, −1, −1, −1, −1},
133 {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, −1, −1, −1, −1},
134 {6, 3, 11, 6, 5, 3, 5, 1, 3, −1, −1, −1, −1, −1, −1, −1},
135 {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, −1, −1, −1, −1},
136 {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, −1, −1, −1, −1},
137 {6, 5, 9, 6, 9, 11, 11, 9, 8, −1, −1, −1, −1, −1, −1, −1},
138 {5, 10, 6, 4, 7, 8, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
139 {4, 3, 0, 4, 7, 3, 6, 5, 10, −1, −1, −1, −1, −1, −1, −1},
140 {1, 9, 0, 5, 10, 6, 8, 4, 7, −1, −1, −1, −1, −1, −1, −1},
141 {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, −1, −1, −1, −1},
142 {6, 1, 2, 6, 5, 1, 4, 7, 8, −1, −1, −1, −1, −1, −1, −1},
143 {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, −1, −1, −1, −1},
144 {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, −1, −1, −1, −1},
145 {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, −1},
146 {3, 11, 2, 7, 8, 4, 10, 6, 5, −1, −1, −1, −1, −1, −1, −1},
147 {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, −1, −1, −1, −1},
148 {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, −1, −1, −1, −1},
149 {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, −1},
150 {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, −1, −1, −1, −1},
151 {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, −1},
152 {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, −1},
153 {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, −1, −1, −1, −1},
154 {10, 4, 9, 6, 4, 10, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
155 {4, 10, 6, 4, 9, 10, 0, 8, 3, −1, −1, −1, −1, −1, −1, −1},
156 {10, 0, 1, 10, 6, 0, 6, 4, 0, −1, −1, −1, −1, −1, −1, −1},
157 {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, −1, −1, −1, −1},
158 {1, 4, 9, 1, 2, 4, 2, 6, 4, −1, −1, −1, −1, −1, −1, −1},
159 {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, −1, −1, −1, −1},
160 {0, 2, 4, 4, 2, 6, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
161 {8, 3, 2, 8, 2, 4, 4, 2, 6, −1, −1, −1, −1, −1, −1, −1},
162 {10, 4, 9, 10, 6, 4, 11, 2, 3, −1, −1, −1, −1, −1, −1, −1},
163 {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, −1, −1, −1, −1},
164 {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, −1, −1, −1, −1},
165 {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, −1},
166 {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, −1, −1, −1, −1},
167 {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, −1},
168 {3, 11, 6, 3, 6, 0, 0, 6, 4, −1, −1, −1, −1, −1, −1, −1},
169 {6, 4, 8, 11, 6, 8, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
170 {7, 10, 6, 7, 8, 10, 8, 9, 10, −1, −1, −1, −1, −1, −1, −1},
171 {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, −1, −1, −1, −1},
172 {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, −1, −1, −1, −1},
173 {10, 6, 7, 10, 7, 1, 1, 7, 3, −1, −1, −1, −1, −1, −1, −1},
174 {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, −1, −1, −1, −1},
175 {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, −1},
176 {7, 8, 0, 7, 0, 6, 6, 0, 2, −1, −1, −1, −1, −1, −1, −1},
177 {7, 3, 2, 6, 7, 2, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
178 {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, −1, −1, −1, −1},
179 {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, −1},
180 {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, −1},
181 {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, −1, −1, −1, −1},
182 {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, −1},
183 {0, 9, 1, 11, 6, 7, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
184 {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, −1, −1, −1, −1},
185 {7, 11, 6, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
186 {7, 6, 11, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
187 {3, 0, 8, 11, 7, 6, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
188 {0, 1, 9, 11, 7, 6, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
189 {8, 1, 9, 8, 3, 1, 11, 7, 6, −1, −1, −1, −1, −1, −1, −1},
190 {10, 1, 2, 6, 11, 7, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},

Metaballs & Marching Cubes: Blobby Objects and Isosurfaces

Metaballs & Marching Cubes — 6/7

191 {1, 2, 10, 3, 0, 8, 6, 11, 7, −1, −1, −1, −1, −1, −1, −1},
192 {2, 9, 0, 2, 10, 9, 6, 11, 7, −1, −1, −1, −1, −1, −1, −1},
193 {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, −1, −1, −1, −1},
194 {7, 2, 3, 6, 2, 7, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
195 {7, 0, 8, 7, 6, 0, 6, 2, 0, −1, −1, −1, −1, −1, −1, −1},
196 {2, 7, 6, 2, 3, 7, 0, 1, 9, −1, −1, −1, −1, −1, −1, −1},
197 {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, −1, −1, −1, −1},
198 {10, 7, 6, 10, 1, 7, 1, 3, 7, −1, −1, −1, −1, −1, −1, −1},
199 {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, −1, −1, −1, −1},
200 {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, −1, −1, −1, −1},
201 {7, 6, 10, 7, 10, 8, 8, 10, 9, −1, −1, −1, −1, −1, −1, −1},
202 {6, 8, 4, 11, 8, 6, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
203 {3, 6, 11, 3, 0, 6, 0, 4, 6, −1, −1, −1, −1, −1, −1, −1},
204 {8, 6, 11, 8, 4, 6, 9, 0, 1, −1, −1, −1, −1, −1, −1, −1},
205 {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, −1, −1, −1, −1},
206 {6, 8, 4, 6, 11, 8, 2, 10, 1, −1, −1, −1, −1, −1, −1, −1},
207 {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, −1, −1, −1, −1},
208 {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, −1, −1, −1, −1},
209 {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, −1},
210 {8, 2, 3, 8, 4, 2, 4, 6, 2, −1, −1, −1, −1, −1, −1, −1},
211 {0, 4, 2, 4, 6, 2, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
212 {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, −1, −1, −1, −1},
213 {1, 9, 4, 1, 4, 2, 2, 4, 6, −1, −1, −1, −1, −1, −1, −1},
214 {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, −1, −1, −1, −1},
215 {10, 1, 0, 10, 0, 6, 6, 0, 4, −1, −1, −1, −1, −1, −1, −1},
216 {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, −1},
217 {10, 9, 4, 6, 10, 4, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
218 {4, 9, 5, 7, 6, 11, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
219 {0, 8, 3, 4, 9, 5, 11, 7, 6, −1, −1, −1, −1, −1, −1, −1},
220 {5, 0, 1, 5, 4, 0, 7, 6, 11, −1, −1, −1, −1, −1, −1, −1},
221 {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, −1, −1, −1, −1},
222 {9, 5, 4, 10, 1, 2, 7, 6, 11, −1, −1, −1, −1, −1, −1, −1},
223 {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, −1, −1, −1, −1},
224 {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, −1, −1, −1, −1},
225 {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, −1},
226 {7, 2, 3, 7, 6, 2, 5, 4, 9, −1, −1, −1, −1, −1, −1, −1},
227 {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, −1, −1, −1, −1},
228 {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, −1, −1, −1, −1},
229 {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, −1},
230 {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, −1, −1, −1, −1},
231 {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, −1},
232 {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, −1},
233 {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, −1, −1, −1, −1},
234 {6, 9, 5, 6, 11, 9, 11, 8, 9, −1, −1, −1, −1, −1, −1, −1},
235 {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, −1, −1, −1, −1},
236 {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, −1, −1, −1, −1},
237 {6, 11, 3, 6, 3, 5, 5, 3, 1, −1, −1, −1, −1, −1, −1, −1},
238 {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, −1, −1, −1, −1},
239 {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, −1},
240 {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, −1},
241 {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, −1, −1, −1, −1},
242 {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, −1, −1, −1, −1},
243 {9, 5, 6, 9, 6, 0, 0, 6, 2, −1, −1, −1, −1, −1, −1, −1},
244 {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, −1},
245 {1, 5, 6, 2, 1, 6, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
246 {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, −1},
247 {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, −1, −1, −1, −1},
248 {0, 3, 8, 5, 6, 10, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
249 {10, 5, 6, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
250 {11, 5, 10, 7, 5, 11, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
251 {11, 5, 10, 11, 7, 5, 8, 3, 0, −1, −1, −1, −1, −1, −1, −1},
252 {5, 11, 7, 5, 10, 11, 1, 9, 0, −1, −1, −1, −1, −1, −1, −1},
253 {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, −1, −1, −1, −1},
254 {11, 1, 2, 11, 7, 1, 7, 5, 1, −1, −1, −1, −1, −1, −1, −1},
255 {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, −1, −1, −1, −1},
256 {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, −1, −1, −1, −1},
257 {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, −1},
258 {2, 5, 10, 2, 3, 5, 3, 7, 5, −1, −1, −1, −1, −1, −1, −1},
259 {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, −1, −1, −1, −1},
260 {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, −1, −1, −1, −1},
261 {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, −1},
262 {1, 3, 5, 3, 7, 5, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
263 {0, 8, 7, 0, 7, 1, 1, 7, 5, −1, −1, −1, −1, −1, −1, −1},
264 {9, 0, 3, 9, 3, 5, 5, 3, 7, −1, −1, −1, −1, −1, −1, −1},
265 {9, 8, 7, 5, 9, 7, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
266 {5, 8, 4, 5, 10, 8, 10, 11, 8, −1, −1, −1, −1, −1, −1, −1},
267 {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, −1, −1, −1, −1},
268 {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, −1, −1, −1, −1},
269 {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, −1},
270 {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, −1, −1, −1, −1},
271 {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, −1},
272 {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, −1},
273 {9, 4, 5, 2, 11, 3, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
274 {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, −1, −1, −1, −1},
275 {5, 10, 2, 5, 2, 4, 4, 2, 0, −1, −1, −1, −1, −1, −1, −1},
276 {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, −1},
277 {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, −1, −1, −1, −1},
278 {8, 4, 5, 8, 5, 3, 3, 5, 1, −1, −1, −1, −1, −1, −1, −1},
279 {0, 4, 5, 1, 0, 5, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},

280 {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, −1, −1, −1, −1},
281 {9, 4, 5, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
282 {4, 11, 7, 4, 9, 11, 9, 10, 11, −1, −1, −1, −1, −1, −1, −1},
283 {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, −1, −1, −1, −1},
284 {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, −1, −1, −1, −1},
285 {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, −1},
286 {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, −1, −1, −1, −1},
287 {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, −1},
288 {11, 7, 4, 11, 4, 2, 2, 4, 0, −1, −1, −1, −1, −1, −1, −1},
289 {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, −1, −1, −1, −1},
290 {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, −1, −1, −1, −1},
291 {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, −1},
292 {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, −1},
293 {1, 10, 2, 8, 7, 4, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
294 {4, 9, 1, 4, 1, 7, 7, 1, 3, −1, −1, −1, −1, −1, −1, −1},
295 {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, −1, −1, −1, −1},
296 {4, 0, 3, 7, 4, 3, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
297 {4, 8, 7, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
298 {9, 10, 8, 10, 11, 8, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
299 {3, 0, 9, 3, 9, 11, 11, 9, 10, −1, −1, −1, −1, −1, −1, −1},
300 {0, 1, 10, 0, 10, 8, 8, 10, 11, −1, −1, −1, −1, −1, −1, −1},
301 {3, 1, 10, 11, 3, 10, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
302 {1, 2, 11, 1, 11, 9, 9, 11, 8, −1, −1, −1, −1, −1, −1, −1},
303 {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, −1, −1, −1, −1},
304 {0, 2, 11, 8, 0, 11, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
305 {3, 2, 11, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
306 {2, 3, 8, 2, 8, 10, 10, 8, 9, −1, −1, −1, −1, −1, −1, −1},
307 {9, 10, 2, 0, 9, 2, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
308 {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, −1, −1, −1, −1},
309 {1, 10, 2, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
310 {1, 3, 8, 9, 1, 8, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
311 {0, 9, 1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
312 {0, 3, 8, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1},
313 {−1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1, −1}};
314
315 /∗
316 Determine the index into the edge table which
317 tells us which vertices are inside of the surface
318 ∗/
319 cubeindex = 0;
320 if (grid.val[0] < isolevel) cubeindex |= 1;
321 if (grid.val[1] < isolevel) cubeindex |= 2;
322 if (grid.val[2] < isolevel) cubeindex |= 4;
323 if (grid.val[3] < isolevel) cubeindex |= 8;
324 if (grid.val[4] < isolevel) cubeindex |= 16;
325 if (grid.val[5] < isolevel) cubeindex |= 32;
326 if (grid.val[6] < isolevel) cubeindex |= 64;
327 if (grid.val[7] < isolevel) cubeindex |= 128;
328
329 /∗ Cube is entirely in/out of the surface ∗/
330 if (edgeTable[cubeindex] == 0)
331 return(0);
332
333 /∗ Find the vertices where the surface intersects the cube ∗/
334 if (edgeTable[cubeindex] & 1)
335 vertlist[0] =
336 VertexInterp(isolevel,grid.p[0],grid.p[1],grid.val[0],grid.val[1]);
337 if (edgeTable[cubeindex] & 2)
338 vertlist[1] =
339 VertexInterp(isolevel,grid.p[1],grid.p[2],grid.val[1],grid.val[2]);
340 if (edgeTable[cubeindex] & 4)
341 vertlist[2] =
342 VertexInterp(isolevel,grid.p[2],grid.p[3],grid.val[2],grid.val[3]);
343 if (edgeTable[cubeindex] & 8)
344 vertlist[3] =
345 VertexInterp(isolevel,grid.p[3],grid.p[0],grid.val[3],grid.val[0]);
346 if (edgeTable[cubeindex] & 16)
347 vertlist[4] =
348 VertexInterp(isolevel,grid.p[4],grid.p[5],grid.val[4],grid.val[5]);
349 if (edgeTable[cubeindex] & 32)
350 vertlist[5] =
351 VertexInterp(isolevel,grid.p[5],grid.p[6],grid.val[5],grid.val[6]);
352 if (edgeTable[cubeindex] & 64)
353 vertlist[6] =
354 VertexInterp(isolevel,grid.p[6],grid.p[7],grid.val[6],grid.val[7]);
355 if (edgeTable[cubeindex] & 128)
356 vertlist[7] =
357 VertexInterp(isolevel,grid.p[7],grid.p[4],grid.val[7],grid.val[4]);
358 if (edgeTable[cubeindex] & 256)
359 vertlist[8] =
360 VertexInterp(isolevel,grid.p[0],grid.p[4],grid.val[0],grid.val[4]);
361 if (edgeTable[cubeindex] & 512)
362 vertlist[9] =
363 VertexInterp(isolevel,grid.p[1],grid.p[5],grid.val[1],grid.val[5]);
364 if (edgeTable[cubeindex] & 1024)
365 vertlist[10] =
366 VertexInterp(isolevel,grid.p[2],grid.p[6],grid.val[2],grid.val[6]);
367 if (edgeTable[cubeindex] & 2048)
368 vertlist[11] =
369 VertexInterp(isolevel,grid.p[3],grid.p[7],grid.val[3],grid.val[7]);
370

Metaballs & Marching Cubes: Blobby Objects and Isosurfaces

Metaballs & Marching Cubes — 7/7

371 /∗ Create the triangle ∗/
372 ntriang = 0;
373 for (i=0;triTable[cubeindex][i]!=−1;i+=3) {
374 triangles[ntriang].p[0] = vertlist[triTable[cubeindex][i]];
375 triangles[ntriang].p[1] = vertlist[triTable[cubeindex][i+1]];
376 triangles[ntriang].p[2] = vertlist[triTable[cubeindex][i+2]];
377 ntriang++;
378 }
379
380 return(ntriang);
381 }
382
383 /∗
384 Linearly interpolate the position where an isosurface cuts
385 an edge between two vertices, each with their own scalar value
386 ∗/
387 XYZ VertexInterp(isolevel,p1,p2,valp1,valp2)
388 double isolevel;
389 XYZ p1,p2;
390 double valp1,valp2;
391 {
392 double mu;
393 XYZ p;
394
395 if (ABS(isolevel−valp1) < 0.00001)
396 return(p1);
397 if (ABS(isolevel−valp2) < 0.00001)
398 return(p2);
399 if (ABS(valp1−valp2) < 0.00001)
400 return(p1);
401 mu = (isolevel − valp1) / (valp2 − valp1);
402 p.x = p1.x + mu ∗ (p2.x − p1.x);
403 p.y = p1.y + mu ∗ (p2.y − p1.y);
404 p.z = p1.z + mu ∗ (p2.z − p1.z);
405
406 return(p);
407 }

Metaballs & Marching Cubes: Blobby Objects and Isosurfaces

	Introduction
	Overview
	Metaball Mathematics
	Marching Cube Algorithm Details
	Further Work
	Acknowledgements
	References
	Appendix

