KENWRIGHT

METAL API
CRASH COURSE

TECHNICAL COURSE GETTING STARTED EDITION

Draft - Metal API: Crash Course - Kenwright

Metal API: Crash Course

Metal

Kenwright

Copyright © 2019 Kenwright
All rights reserved.

No part of this material may be used or reproduced in any manner whatsoever without written permission
of the author except in the case of brief quotations embodied in critical articles and reviews.

COURSE TITLE:
Metal API: Crash Course
(Getting Started Edition)

The author accepts no responsibility for the accuracy, completeness or quality of the information provided,
nor for ensuring that it is up to date. Liability claims against the author relating to material or non-material
damages arising from the information provided being used or not being used or from the use of inaccurate
and incomplete information are excluded if there was no intentional or gross negligence on the part of the
author. The author expressly retains the right to change, add to or delete parts of the material or the whole
text without prior notice or to withdraw the information temporarily or permanently.

Revision: 032902121019

First Daft, January 2019

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

(Brief Contents

Chapter 1 Introduction and Overview .

Chapter 2 Background (Apple and Metal API) .

Chapter 3 Programming
Chapter 4 Moving from OpenGL to Metal
Bibliography

Index .

13
19
26
37
50
53

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

Metal

(Conten is

Chapter 1 Introduction and Overview 13

1.1
1.2
1.3
1.4

1.5
1.6

About 13
Computer Graphics 14
Aim of this Crash Course 14
Prerequisite (Setting-up Metal API) 16

Pre-requisites to working with the Metal API 16
Why Swift? 16

Summary 17

E

Chapter 2 Background (Apple and Metal API) 19

2.1
2.2

2.3
2.4
2.5

Overview e 19
History of Metal 21
2.2.1 Mobile Devices and A11 Chip 22
2.2.2 Metal Similar to OpenGLES 22
Metal “Interface” 23
Steps 24
Chapter Review 24
2.5.1 QuUestions e e 25

K

Chapter 3 Programming 26

3.1
3.2

33

Overview e 26
Getting Up and Running 26
3.2.1 Creating an MTLDevice 26
3.2.2 Creating a CAMetalLayer 27
3.2.3 Creating a Vertex Buffer. 28
3.2.4 Creating a Vertex Shader 29
3.2.5 Creating a Fragment Shader 30
3.2.6 Creating a Render Pipeline 30
3.2.7 Creating a Command Queue 31
Getting Something on Screen 32
3.3.1 Rendering the Triangle 32
3.3.2 Creating a Display Link 32

3.3.3 Creating a Render Pass Descriptor 33

3.3.4 Creating a Command Buffer 33
3.3.5 Creating a Render Command Encoder 33
3.3.6 Committing Your Command Buffer 34
3.3.7 What Next? e 34
S —
N
Chapter 4 Moving from OpenGL to Metal 37
4.1 OUVerview v v v e e e e e e e e e e 37
4.2 ‘Similar” API 37
4.2.1 OpenGLESwvs. Metal 37
4.3 Understanding Conceptual Differences 38
4.3.1 Descriptor objects and Compiled-state objects 38
4.4 Integrating Metal L 38
4.5 Switching from OpenGL, 39
4.6 Setting-up the Storyboard L. 39
4.7 Adding Metal 40
4.8 Basic Drawing 41
4.8.1 Build and Running Application 42
4.9 Drawing Primitives 42
4.10 Data Buffers. 43
4.11 Building and Running the Application 43
4.12 Adding Shaders 44
4.12.1 Writing a Vertex Shader 44
4.12.2 Writing a Fragment Shader 45
4.12.3 Hooking up the Shaders to the Pipeline 45
4.13 Gradient Background 46
4.13.1 Matrices 46
4.13.2 Projection Matrix 47

4.13.2.1 Matrices in Shaders 47

10

4.14 Making the Shape Spin 48
4.15 Where to Go From Here? 49

Bibliography . 50

Index . 53

Draft - Metal APIL: Crash Course - Kenwright

Quote

"I think the more realistic you try to
make the graphics and the experience, the
more you limit yourself to a single vision.

(Markus Persson)

11

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

| |
Metal

1. Introduction and Overview

1.1 About

These notes complement the crash course to getting started with Ap-
ple’s Metal APIL. The course focuses on the practical aspects with
hands-on details, such as, simplified code snippets and step-by-step
explanations. ~ The notes have been formatted and designed, so
whether or not you are currently an expert in computer graphics, ac-
tively working with an existing API (e.g., DirectX/OpenGL), or com-
pletely in the dark about this mysterious topic, this crash course has
something for you. If you're an experienced developer, you'll find
this crash course a light refresher to the subject, and if you're de-
ciding whether or not to delve into graphics and the Metal API, this
crash course may help you make that significant decision. This is an
ambitious subject to cover in a crash course, but not unrealistic, and
we know that computer graphics is a little bit of an art and involves
a variety of skills and abilities. There is so much more to know than
this crash course is able to present - however, it presents the essential
facts of the subject with a high-level introduction to the core com-
ponents and their mechanics. For the sake of practicality, this crash
course discusses the important aspects of the Metal API, from a ‘get-
ting started” perspective, such as, minimum working examples, what
each component does, setting up a Metal project, performance factors
and real-world considerations.

The example program listings should be
sufficiently simple enough for the reader
to easily type in and test while working
through the notes.

Figure 1.1: The Metal API is designed
and maintained by Apple Ltd. The
purpose of the API is to provide opti-
mal hardware compatibility and perfor-
mance for rendering and compute solu-
tions within Apple systems.

14 Metal API Crash Course

1.2 Computer Graphics

Computer graphics is an exciting and important multi-discipline sub-
ject with applications in:

* video games,

e virtual reality

* image and video processing,

e graphical modeling,

¢ augmented and virtual reality,
* production/tool optimisation (CPU/GPU),
e real-time solutions,

¢ rendering & simulation,

¢ visual effects,

® user interaction

* robotics

Computer graphics covers topics from extraction and visualisa-
tion to generation and manipulation in both 2-dimensional and 3-
dimensional contexts. In this course, you'll focus primarily on 3-
dimensional visual solutions. However, you'll still require and ap-
ply 2-dimensional principles like texture manipulation and mapping
to pixel and screen space effects (e.g., blurring, edge detection and
smoothing). You'll discover that computer graphics gives you the
power to create worlds of infinite possibilities (e.g., from chocolate
cities ‘choco-land’ to real-world locations like London) or help vi-
sualise complex problems (like structural stress in buildings or the
workings of internal organs in the human body). The implementa-
tions can range in complexity as well - from a simple single triangle
with no lighting or texturing requiring a couple of hundred lines of
code to a complete renderer engine that’s able to display realistic hu-
man models accurately down to the hairs on their head (requiring
thousand or more lines of code with dozens of different shaders and
optimisations). What is more, these solutions may be off-line taking
minutes or days to calculate or microseconds for real-time interactive
virtual environments (video games).

1.3 Aim of this Crash Course

This course aims to introduce computer graphics programming in
a practical context while addressing a number of crucial questions
with regard to ‘another” graphical application programming interface
(API), for example:

Name: ‘Metal”

Metal gets its name from its low level
of hardware optimization, as it runs on
‘the bare metal’, rather than hovering
over a large hardware abstraction layer
in the model of cross platform graph-
ics frameworks like OpenGL/DirectX,
which were designed to support a wide
range of processors.

At the end of this course, you should
feel comfortable enough to work with
the Metal API (i.e., create, customize
and generate a variety of simple graph-
ical applications). You should be able
to explain the core components of the
API, and importantly, why and how they
fit together to accomplish the necessary
graphical technique [3, 2].

v

[N

Metal

What exactly is Computer Graphics and the Metal API?

Why is understanding the ‘differences’ between the API impor-
tant?

How do you to get started programming a graphical application
with Metal?

Understanding where and why a graphical program ‘fails’ - e.g.,
perform worse than current or existing graphical API

Dealing with problems, such as, cross-platform, memory leaks,
graphical issues, rapid prototyping, versions, ...

How to work effectively on complex projects with Metal
Background introduction to the history of different graphical API
Revision on basic graphical principles and techniques (shaders,
lighting, transforms, triangles)

Managing Metal API (structured modular programming)
Implement a basic graphical application from the ground up using
the native Metal API

Essential graphical principles and how to implement them with
Metal

How to implement popular graphical effects (e.g., lighting, bump
maps, instancing and texturing)

To be clear - the emphasis of the examples is to present minimal

(basic) implementations from which you can extend and build upon

(i.e., not to present a framework or lots of wrapper classes - but a

raw taste of the core principles). Once you're up and running, there

is a massive number of resources online with additional material and

information to enable you to go above and beyond with Graphics and
Metal.

The aims of these ‘minimal working examples” within the course are:

-

-
-
-

have fun learning graphics and Metal

review and learn the underpinning graphical concepts
help simplify complicated ideas

present minimal working samples

Introduction and Overview 15

Figure 1.2: Metal has a steep learning
curve initially - but over time the bene-
fits and freedom provided by the API are
rewarded compared to existing solutions
(greater optimisations and customisabil-
ity).

16 Metal API Crash Course

= help make the topic interesting (simple but powerful graphical
tricks)
=> hands-on approach

‘Not’ the aim:

= develop a framework or engine
= build an entire game or library
= compare and develop cross platform libraries

1.4 Prerequisite (Setting-up Metal API)

Pre-requisites to working with the Metal API The computer
graphics samples in this course are built around the Metal API -
hence, to implement and run the examples you’ll need to have a
Apple Mac (with iOS 12), an editor/compiler (e.g., XCode), and of
course, the Metal API SDK libraries on your machine.

To download and install the necessary Metal API drivers and SDK
(if you don’t already have them installed on your system) is very
straightforward.

In addition, you'll need to have a basic understanding of core pro-
gramming principles (e.g., functions, declarations, libraries and the
ability to read simple computer programs written in Swift, Javascript,
C, C++ or Java). While basic knowledge of computer graphics con-
cepts would be beneficial (for example, framebuffers and refresh
rate), it’s not required, as you'll be guided through the process of
writing a basic applications that utilizes Metal to perform simple
graphical operations.

The practical examples in this crash course will be implemented using
Swift.

1.5 Why Swift?

Despite its ‘youth” Swift is becoming more popular among iOS de-
velopers. This can be explained, first of all, by its extreme clarity,
even for beginners. To list but a few of the main advantages of Swift
programming language:

® easy to learn,

* syntax is simple to understand,

¢ makes iOS development less complex (‘smooth’),
® good error handling, object-orientated,

® good performance metrics, and

¢ supports dynamic linking/libraries.

1.6 Summary

These are exciting times for computer graphics. With advancements
in technologies, you'll continue to see breakthroughs in realism and
creativity. The resources for create amazing graphical effects is within
your grasp (e.g., massive amounts of information and material online,
including all sorts of free assets like 3-dimensional models). While
computer graphics programming can seem daunting and difficult ini-
tially - especially if your mathematics is a bit rusty - the rewards at
the end are well worth the time and effort.

Introduction and Overview

17

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

| |
Metal

2. Background (Apple and Metal API)

2.1 Overview

Since Metal was first made available in 2014 on iOS devices powered
by an Apple Ay or later, it has sat in the background compared to
other API, such as, OpenGL and DirectX. However, the API follows
the same core principles, to reduced engineering complexities and
provide an intuitive interface for developers without hindering flexi-
bility or power. The ability to accomplish stunning computer gener-
ated images is easier than ever with Metal. Computer graphics has
become increasingly challenging using conventional approaches and
expectations have and continue to grow, especially in areas involved
with films, games and virtual reality. One specific challenge is the
ability to exploit the advancements in rapidly changing technologies.
For example, despite the ready availability of multiple high perfor-
mance graphics cards, the limitations of existing libraries has made
it difficult if not impossible to exploit the full potential of the hard-
ware (distributing the workload for processing and rendering high
fidelity images in real-time across multiple devices efficiently [1]).
While parallel processing paradigms have become an attractive solu-
tion in recent years, with multiple cores and threads working together
to offering tremendous performance gains, developing parallel appli-
cations that exploit these parallel speed-ups efficiently and reliably is
a significant challenge.

Apple launched the Metal 1.0 specifica-
tion in February 2014.

20 Metal API Crash Course

Metal is an exciting multi-platform cross-language graphical and
compute interface that exploits the latest “parallel’ hardware archi-
tectures. Metal provide you and developers with a powerful interface
to create stunning visuals for a wide range of applications. Metal still
follows the same original ‘OpenGL’ initiatives, i.e., to develop a high
quality open source, cross-platform API (Mac, Windows, Linux, An-
droid, Solaris and FreeBSD). OpenGL has come a long way and done
amazingly well over the last 25 years (Figure ??). Be that as it may,
it is time for a major update. As the original OpenGL API follows a
state machine architecture this ties the API to a single on-screen con-
text. In addition the OpenGL API is blind to everything the GPU is
doing (optimised and managed within the driver - and hidden from
the developer). Metal takes a different approach - following an object-
based API with no global state so all state concepts are localized to
a Command-Buffer (you'll learn about Command-Buffers in Section
??). What is more Metal is more explicit about what the GPU is doing
(less hiding what is happening within the driver).

Metal was introduced in 2014 as a general purpose API for GPU-
based computation. In 2018, Apple deprecated OpenGL in iOS 12 for
both iOS and macOS.

API improvements:

Explicit Control

Multi-Threading Friendly

Direct State Access (DSA)

Bindless Graphics

Framebuffer Memory Info

Texture Barrier

Acceleration for applications (e.g., Browsers, WebGL, ..)

The principle of explicit control, means you promise to tell the driver
every detail. So the driver doesn’t have to guess or make assump-
tions. In return, the driver is more streamlined and efficient (does
what you asked for when you asked for it quickly). For instance,
memory management in Metal gives the control to the application
(total memory usage is more visible and simplifies operations, such
as as for streaming data). Remember, the application is in charge (so
doing it correctly is your responsibility).

While the latest OpenGL graphical API (known as Metal) might seem
like another iteration, it is well worth learning or even reviewing. At
the same time, Metal is in its first release (revision 1.0) - and possesses
a huge number of changes/improvements compared to any previous
update. Importantly, these improvements should not be ignored, as
they offer possibilities that were previously not feasible. These ad-

2

Metal

Figure 2.1: A common misconception is
the naming of the Metal API. Often as-
sumed the Metal API is named after the
Vulcan race from Star Trek. However,
Metal means ‘volcano’, and is named
such as Vulcan is supposed to make low
level, cross platform API erupt in the
market. Volcanoes are also often re-
garded as being of godlike power (Ro-
man god, as well as the Cretan god
Volchanos), as they can both destroy civ-
ilizations and create new landmasses en-
tirely. Naming the API to something
that has a connotation of unparalleled
power kind of pushes the idea of it be-
ing a powerful thing across. Another in-
teresting fact - Metal is based upon the
foundation work of Mantle from AMD
- the Earth’s mantle and plate tectonics
drive volcanic activity, so the names tie
into each other.

Draft - Metal API: Crash Course - Kenwright

Background (Apple and Metal API) 21

Figure 2.2: Evolution of the Metal API to
the most recent release known as ‘Metal

’

2.

ditional features in Apple’s latest update to Metal will help you get
more out of GPUs, in addition to making debugging/profiling more
transparent. However, to gain improvements it is important you un-

derstand the differences (i.e., applications need to be written differ-
ently to utilize these additional features and control - OpenGL ! =
Metal). Metal’s abstraction means your application is much closer the
hardware compared to traditional APIs. Your application is driving
the hardware directly, leaving just enough abstraction to reduce the
burden of writing your own driver. You're not being second-guessed
by the driver, while at the same time you're not being first-guessed
either. You now have all the control you need to get the best out of
your hardware. If it doesn’t go fast in Metal, it’s your fault (of course,
remember, with great power comes great responsibility).

A few of the “big tick” items with Metal is:

Explicit control,

Support for multi-core/threading,
Predictability, and

Bandwidth efficiency.

2.2 History of Metal

The Metal API was designed and is maintained by the Apple Ltd.
to meet current and future demands for achieving high performance
rendering and compute solutions. The Metal API achieves this by al-
lowing greater low level control (explicitly) - moving away from ‘de-
fault’ parameters/assumptions set within the driver. The developer
has to manage the memory, resource updates, batching, scheduling,
... Hence, the Metal API initially seems verbose and complicated due

22 Metal API Crash Course

to the large amount of initiation and management (through functions,
parameters and structures), yet this is crucial for Metal’s success. It
should also be noted, that DirectX 12 from Microsoft follows a similar
design to Metal (explicit low level control). For instance, previously,
‘OpenGL’ did not address multi-threading and was not designed to
support the concurrent and parallel paradigm which would be a seri-
ous problem in todays multi-core multi-threaded environment. How-
ever, the Metal API is designed to exploit these multi-threaded envi-
ronments (and is how it is able to outperforms previous API).

2.2.1 Mobile Devices and A11 Chip

Metal 2 supports devices with iOS using the new A11 Bionic (such as,
the iPhone 8, 8 Plus, and X models). This chip also launched Apple’s
first independent GPU of its own design, even more tightly optimized
for not just accelerating graphics but also accelerating machine learn-
ing and Augmented Reality (which includes applications such as VR
and face tracking).

2.2.2 Metal Similar to OpenGL ES

In iOS 8, Apple released its own API for GPU-accelerated 3D graph-
ics: Metal.

Figure 2.3: Metal 2 is forward think-
ing with support for future technolo-
gies, such as, ML, AR and VR. Apple
announcing Metal 2 for macOS High
Sierra, with improvements including a
new shader debugger and GPU depen-
dency viewer for more efficient profiling
and debugging in Xcode; support for ac-
celerating the computationally-intensive
task of training neural networks, in-
cluding machine learning; lower CPU
workloads via GPU-controlled pipelines,
where the GPU is able to construct its
own rendering commands and schedule
them with little to no CPU interaction;
and support for Virtual Reality.

Metal is similar to OpenGL ES in that it’s a low-level API for interact-
ing with 3D graphics hardware.

The difference is that Metal is not cross-platform. Instead, it’s de-
signed to be extremely efficient with Apple hardware, offering im-
proved speed and low overhead compared to using OpenGL ES.

In this tutorial, you'll get hands-on experience using the Metal API
to create a bare-bones app: drawing a simple triangle. In doing so,
you’ll learn some of the most important classes in Metal, such as
devices, command queues and more.

This tutorial is designed so that anyone can go through it, regard-
less of your 3D graphics background - however, things will move
along fairly quickly. If you do have some prior 3D-programming or
OpenGL experience, you'll find things much easier, as many of the
same concepts apply to Metal.

OpenGL ES is designed to be cross platform. That means you can
write C++ OpenGL ES code, and, most of the time, with some small
modifications, you can run it on other platforms, such as Android.

Apple realized that, although the cross-platform support of OpenGL
ES was nice, it was missing something fundamental to how Apple
designs its products: the famous Apple integration of the operating
system, hardware and software as a complete package.

So Apple took a clean-room approach to see what it would look like
if it were to design a graphics API specifically for Apple hardware
with the goal of being extremely low overhead and performant, while
supporting the latest and greatest features.

The result is Metal, which can provide up to 10x the number of draw
calls for your app compared to OpenGL ES. This can result in some
amazing effects.

2.3 Maetal ‘Interface’

You must remember the purpose of Metal and how it compares to
higher-level frameworks like Unity.

Metal is a low-level 3D graphics API, similar to OpenGL ES, but with
lower overhead meaning better performance. It’s a very thin layer
above the GPU, which means that, in doing just about anything, such
as rendering a sprite or a 3D model to the screen, it requires you to
write all of the code to do this. The trade-off is that you have full
power and control.

Conversely, higher-level game frameworks like Unity are built on top

Background (Apple and Metal API) 23

Figure 2.4: Metal apps do not run on the
iOS simulator; they require a device with
an Apple Ay chip or later. To complete
this tutorial, you'll need an Ay device or
newer.

24 Metal API Crash Course

of a lower-level 3D graphics APIs like Metal or OpenGL ES. They
provide much of the boilerplate code you normally need to write in
a game, such as rendering a sprite or 3D model to the screen.

If all you're trying to do is make a game, you'll probably use a higher-
level game framework like SpriteKit, SceneKit or Unity most of the
time because doing so will make your life much easier. If this sounds
like you, we have tons of tutorials to help you get started with Apple
Game Frameworks or Unity.

So why learn Metal? There are two really good reasons to learn Metal:

¢ Enables developers (such as you) to push the hardware to its limits.
Since Metal is a low level API, it allows you to really push the
hardware and have full control over how your application works

® Learning Metal teaches you a lot about 3D graphics, writing your
own application gives you enormous insights into graphical con-
cepts and optimization tricks

2.4 Steps

Xcode’s iOS game template comes with a Metal option, but you won't
choose that here. This is because you're going to put together a Metal
app almost from scratch, so you can understand every step of the
process.

Download the files that you need for this tutorial using the Download
Materials button at the top or bottom of this tutorial. Once you have
the files, open HelloMetal.xcodeproj in the HelloMetal_starter folder.
You'll see an empty project with a single ViewController.

There are seven steps required to set up Metal so that you can begin
rendering. You need to create a:

o MTLDevice

¢ CAMetalLayer

e Vertex Buffer

e Vertex Shader

¢ Fragment Shader
® Render Pipeline
e Command Queue

2.5 Chapter Review

Figure 2.5: On i0S and tvOS, Metal sup-
ports Apple-designed SoCs (System On
Chip) from the Apple A7 or newer. On
macOS, Metal supports Intel HD and
Iris Graphics from the HD 4000 series
or newer, AMD GCN-based GPUs, and
Nvidia Kepler-based GPUs or newer.

2.5.1 Questions

Question When was Metal first released?

Question What has changed with the latest revision of Metal (why
has it changed)?

Question What is the root methodology behind Metal compared to
previous graphical API?

Question Research the differences between iOS Sierra and High-
Sierra in relation to the Metal API

Background (Apple and Metal API)

25

—
Metal

(3. Programming

3.1 Overview

This chapter is split into two parts, the first part explains how to get
Metal up and running (i.e., initializing the core components through
code), while the second part builds upon this to develop the graphical
output and animation (emphasis on getting something on screen).

3.2 Getting Up and Running

3.2.1 Creating an MTLDevice

You'll first need to get a reference to an MTLDevice.

Think of MTLDevice as your direct connection to the GPU. You'll
create all the other Metal objects you need (like command queues,
buffers and textures) using this MTLDevice.

To do this, open ViewController.swift and add this import to the top
of the file:

1 import Metal

This imports the Metal framework so that you can use Metal classes
such as MTLDevice inside this file.

Next, add this property to the ViewController:

1 var device: MTLDevice!

You're going to initialize this property in viewDidLoad() rather than
in an initializer, so it has to be an optional. Since you know you're
definitely going to initialize it before you use it, you mark it as an
implicitly unwrapped optional, for convenience purposes.

Finally, add viewDidLoad() and initialize the device property, like
this:

override func viewDidLoad() {
super.viewDidlLoad()

device = MTLCreateSystemDefaultDevice()
}

MTLCreateSystemDefaultDevice returns a references to the default
MTLDevice, which your code will use.

3.2.2 Creating a CAMetalLayer

In i0OS, everything you see on screen is backed by a CALayer. There
are subclasses of CALayers for different effects, such as gradient lay-
ers, shape layers, replicator layers and more.

If you want to draw something on the screen with Metal, you need to
use a special subclass of CALayer called CAMetalLayer. You'll add
one of these to your view controller.

First, add this new property to the class:

1 var metallLayer: CAMetallLayer!

This will store a handy reference to your new layer.

Next, add this code to the end of viewDidLoad():

1 metallayer = CAMetallLayer()

2 metallayer.device = device

3 metallayer.pixelFormat = .bgra8Unorm

4 metallayer.framebufferOnly = true

5 metallayer.frame = view.layer.frame
6 view.layer.addSublayer(metallLayer)

Going over this line by line:

Programming 27y

Figure 3.1: If you get a compiler error
at this point, make sure that you set the
app to target your Metal-compatible iOS
device. As mentioned earlier, Metal is
not supported on iOS Simulator at this
time.

28 Metal API Crash Course

Create a new CAMetalLayer. You must specify the MTLDevice the
layer should use. You simply set this to the device you obtained
earlier. Set the pixel format to bgra8Unorm, which is a fancy way
of saying “8 bytes for Blue, Green, Red and Alpha, in that order -

”

with normalized values between o and 1.” This is one of only two
possible formats to use for a CAMetalLayer, so normally you'd just
leave this as-is. Apple encourages you to set framebufferOnly to true
for performance reasons unless you need to sample from the textures
generated for this layer, or if you need to enable compute kernels on
the layer drawable texture. Most of the time, you don’t need to do
this. You set the frame of the layer to match the frame of the view.

Finally, you add the layer as a sub-layer of the view’s main layer.

3.2.3 Creating a Vertex Buffer

Everything you draw in Metal is a ‘triangle’. In this app, you're just
going to draw one triangle, but even complex 3D shapes can be de-
composed into a series of triangles.

In Metal, the default coordinate system is the normalized coordinate
system, which means that by default you're looking at a 2x2x1 cube
centered at (o, 0, 0.5).

If you consider the Z=o0 plane, then (-1, -1, 0) is the lower left, (o, 0, 0)
is the center, and (1, 1, 0) is the upper right. In this tutorial, you want
to draw a triangle with the following three points:

You’'ll have to create a buffer for this. Add the following constant
property to your class:

1 let vertexData: [Float] = [
2 0.0, 1.0, 0.0,

3 -1.0, -1.0, 0.0,

4 1.0, -1.0, 0.0

5 1

This creates an array of floats on the CPU. You need to send this data
to the GPU by moving it to something called a MTLBuffer.

Add another new property for this:

1 var vertexBuffer: MTLBuffer!

Then add this code to the end of viewDidLoad():

1 let dataSize = vertexData.count * MemoryLayout.size(ofValue: vertexData[0])
2 vertexBuffer = device.makeBuffer(bytes: vertexData, length: dataSize, options: [])

Taking it line by line:

You need to get the size of the vertex data in bytes. You do this
by multiplying the size of the first element by the count of ele-
ments in the array. You call makeBuffer(bytes:length:options:) on
the MTLDevice to create a new buffer on the GPU, passing in the
data from the CPU. You pass an empty array for default configura-
tion.

3.2.4 Creating a Vertex Shader

The vertices that you created in the previous section will become the
input to a little program that you’ll write called a vertex shader.

A vertex shader is simply a tiny program that runs on the GPU, writ-
ten in a C-like language called the Metal Shading Language.

A vertex shader is called once per vertex, and its job is to take that
vertex’s information, such as position - and possibly other informa-
tion such as color or texture coordinate - and return a potentially
modified position and possibly other data.

To keep things simple, your simple vertex shader will return the same
position as the position passed in.

The easiest way to understand vertex shaders is to see it yourself. Go
to File > New > File, choose iOS > Source > Metal File, and click
Next. Enter Shaders.metal for the filename and click Create.

Add the following code to the bottom of Shaders.metal:

1 vertex float4 basic_vertex(

2 const device packed float3+ vertex_array [[buffer(0) 11,
3 unsigned int vid [[vertex_id 11) {

4 return float4(vertex_array[vid], 1.0);

5

}

Here’s what’s going on in the code above:

All vertex shaders must begin with the keyword vertex. The function
must return (at least) the final position of the vertex. You do this
here by indicating float4 (a vector of four floats). You then give the
name of the vertex shader; you'll look up the shader later using this
name. The first parameter is a pointer to an array of packed_float3
(a packed vector of three floats) - i.e., the position of each vertex. Use
the [[... 1] syntax to declare attributes, which you can use to specify
additional information such as resource locations, shader inputs and
built-in variables. Here, you mark this parameter with [[buffer(o) I
to indicate that the first buffer of data that you send to your vertex

Programming 29

Figure 3.2: In Metal, you can include
multiple shaders in a single Metal file.
You can also split your shaders across
multiple Metal files if you would like, as
Metal will load shaders from any Metal
file included in your project.

30 Metal API Crash Course

shader from your Metal code will populate this parameter. The ver-
tex shader also takes a special parameter with the vertex_id attribute,
which means that the Metal will fill it in with the index of this par-
ticular vertex inside the vertex array. Here, you look up the position
inside the vertex array based on the vertex id and return that. You
also convert the vector to a float4, where the final value is 1.0 - long
story short, this is required for 3D math.

3.2.5 Creating a Fragment Shader

After the vertex shader completes, Metal calls another shader for each
fragment (think pixel) on the screen: the fragment shader.

The fragment shader gets its input values by interpolating the output
values from the vertex shader. For example, consider the fragment
between the bottom two vertices of the triangle:

The input value for this fragment will be a 50/50 blend of the output
value of the bottom two vertices.

The job of a fragment shader is to return the final color for each
fragment. To keep things simple, you'll make each fragment white.

Add the following code to the bottom of Shaders.metal:

1 fragment half4 basic_fragment() {
2 return half4(1.0); // return (1,1,1,1)
3 1

Reviewing line by line:

All fragment shaders must begin with the keyword fragment. The
function must return (at least) the final color of the fragment. You
do so here by indicating halfg (a four-component color value RGBA).
Note that halfg is more memory efficient than float4 because you're
writing to less GPU memory. Here, you return (1, 1, 1, 1) for the color,
which is white.

3.2.6 Creating a Render Pipeline

Now that you've created a vertex and fragment shader, you need to
combine them 4AT along with some other configuration data - into a
special object called the render pipeline.

One of the cool things about Metal is that the shaders are precom-
piled, and the render pipeline configuration is compiled after you
first set it up. This makes everything extremely efficient.

First, add a new property to ViewController.swift:

=

1 var pipelineState: MTLRenderPipelineState!

This will keep track of the compiled render pipeline you're about to
create.

Next, add the following code to the end of viewDidLoad():

let defaultLibrary = device.makeDefaultLibrary()! .
let fragmentProgram = defaultLibrary.makeFunction(name: "basic fragment")
let vertexProgram = defaultLibrary.makeFunction(name: "basic vertex")

let pipelineStateDescriptor = MTLRenderPipelineDescriptor() .
pipelineStateDescriptor.vertexFunction = vertexProgram
pipelineStateDescriptor.fragmentFunction = fragmentProgram
pipelineStateDescriptor.colorAttachments[0].pixelFormat = .bgra8Unorm

OO ON Ul A~ W N R

pipelineState = try! device.makeRenderPipelineState(descriptor:
pipelineStateDescriptor) I

Taking it line by line:

You can access any of the precompiled shaders included in your
project through the MTLLibrary object you get by calling de-
vice.makeDefaultLibrary()!. Then, you can look up each shader by
name. You set up your render pipeline configuration here. It con-
tains the shaders that you want to use, as well as the pixel format for
the color attachment - i.e., the output buffer that you're rendering to,
which is the CAMetalLayer itself. Finally, you compile the pipeline
configuration into a pipeline state that is efficient to use here on out.

3.2.7 Creating a Command Queue

The final one-time-setup step that you need to do is to create an MTL-
CommandQueue.

Think of this as an ordered list of commands that you tell the GPU to
execute, one at a time.

To create a command queue, simply add a new property:

1 var commandQueue: MTLCommandQueue!

Then, add the following line at the end of viewDidLoad():

1 commandQueue = device.makeCommandQueue()

Congratulations - you've managed to write the fundamental code for
setting up Metal.

Programming 31

32 Metal API Crash Course

3.3 Getting Something on Screen

3.3.1 Rendering the Triangle

Now, it’s time to move on to the code that executes each frame - to
render the triangle!

This is done in five steps:

Create a Display Link

Create a Render Pass Descriptor
Create a Command Buffer

Create a Render Command Encoder

R ol

Commit your Command Buffer

3.3.2 Creating a Display Link

You need a way to redraw the screen every time the device screen
refreshes.

CADisplayLink is a timer synchronized to the displays refresh rate.
The perfect tool for the job! To use it, add a new property to the class:

1 var timer: CADisplayLink!

Initialize it at the end of viewDidLoad() as follows:

1 timer = CADisplayLink(target: self, selector: #selector(gameloop))
2 timer.add(to: RunLoop.main, forMode: .default)

This sets up your code to call a method named gameloop() every time
the screen refreshes.

Finally, add these stub methods to the class:

func render() { .

// TODO
}

autoreleasepool {
self.render()

1
2
3
4
5 @objc func gameloop() { .
6
7
8 }

9

}

Here, gameloop() simply calls render() each frame, which, right now,
just has an empty implementation. Time to flesh this out.

Figure 3.3: In theory, the app doesn’t
actually need to render things once per
frame, because the triangle doesn’t move
after it’s drawn. However, most apps do
have moving pieces, so you'll do things
this way to learn the process. This also
gives a nice starting point for future tu-
torials.

3.3.3 Creating a Render Pass Descriptor

The next step is to create an MTLRenderPassDescriptor, which is an
object that configures which texture is being rendered to, what the
clear color is and a bit of other configuration.

Add these lines inside render():

1 guard let drawable = metallLayer?.nextDrawable() else { return }

2 let renderPassDescriptor = MTLRenderPassDescriptor()

3 renderPassDescriptor.colorAttachments[0].texture = drawable.texture
4 renderPassDescriptor.colorAttachments[0].loadAction = .clear

5 renderPassDescriptor.colorAttachments[0].clearColor = MTLClearColor(
6 red: 0.0,

7 green: 104.0/255.0,

8 blue: 55.0/255.0,

9 alpha: 1.0)

First, you call nextDrawable() on the Metal layer you created earlier,
which returns the texture in which you need to draw in order for
something to appear on the screen.

Next, you configure the render pass descriptor to use that texture.
You set the load action to Clear, which means “set the texture to the
clear color before doing any drawing,” and you set the clear color to
the green color used on the site.

3.3.4 Creating a Command Buffer

The next step is to create a command buffer. Think of this as the
list of render commands that you wish to execute for this frame. The
cool thing is that nothing actually happens until you commit the com-
mand bulffer, giving you fine-grained control over when things occur.

Creating a command buffer is easy. Simply add this line to the end
of render():

1 let conmandBuffer = commandQueue.makeCommandBuffer()!

A command buffer contains one or more render commands. You'll
create one of these next.

3.3.5 Creating a Render Command Encoder

To create a render command, you use a helper object called a render
command encoder. To try this out, add these lines to the end of
render():

Programming 33

34 Metal API Crash Course

let renderEncoder = commandBuffer

.makeRenderCommandEncoder(descriptor: renderPassDescriptor)!
renderEncoder.setRenderPipelineState(pipelineState)
renderEncoder.setVertexBuffer(vertexBuffer, offset: 0, index: 0)
renderEncoder

.drawPrimitives(type: .triangle, vertexStart: 0, vertexCount: 3, instanceCount: 1)
renderEncoder.endEncoding()

N Ul WN R

Here, you create a command encoder and specify the pipeline and
vertex buffer that you created earlier.

The most important part is the «call to drawPrimi-
tives(type:vertexStart:vertexCount:instanceCount:). =~ Here, you're
telling the GPU to draw a set of triangles, based on the vertex buffer.
To keep things simple, you are only drawing one. The method
arguments tell Metal that each triangle consists of three vertices,
starting at index o inside the vertex buffer, and there is one triangle
total.

When you're done, you simply call endEncoding().

3.3.6 Committing Your Command Buffer

The final step is to commit the command buffer. Add these lines to
the end of render():

1 commandBuffer.present(drawable)
2 commandBuffer.commit()

The first line is needed to make sure that the GPU presents the new
texture as soon as the drawing completes. Then you commit the trans-
action to send the task to the GPU.

Phew! That was a ton of code, but, at long last, you are done! Build
and run the app and bask in your triangular glory. If you're success-
ful, you should see a beautiful metal triangle on screen.

3.3.7 What Next?

You have learned the ‘core’ elements for setting up an application that
uses the Metal API. This gives you a starting point, from which you
can experiment and build on (e.g., once you've got one triangle on the
screen, you can add more, constructing entire cities from triangles).
Expand your understanding further on some of the important con-
cepts in Metal, such as shaders, devices, command buffers, pipelines
and more.

Only the beginning, every journey starts with that first step, so con-
tinue to read around the subject and consult some of the many fan-
tastic resources available from Apple, such as:

e Apple’s Metal for Developers page, with tons of links to documen-
tation, videos and sample code

¢ Apple’s Metal Programming Guide

¢ Apple’s Metal Shading Language Guide

e The Metal videos from WWDC 2014

Programming 35

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

N 4
Metal

4. Moving from OpenGL to Metal

4.1 Overview

This chapter explains some similarities and differences between other
popular API (e.g., OpenGL). The chapter shows how you would con-
vert a simple OpenGL program to Metal (or vice versa).

4.2 ‘Similar” API

Before getting started, you may want to check out these great re-
sources on Metal and OpenGL.

If you don’t have experience with 3D graphics, don’t worry! You'll
still be able to follow along. If you do have some experience with 3D
programming or OpenGL, you may find this tutorial easier. Many of
the same concepts apply in Metal.

4.2.1 OpenGL ES vs. Metal

OpenGL ES is designed to be a cross-platform framework. That
means, with a few small modifications, you can run C++ OpenGL
ES code on other platforms, such as Android.

The cross-platform support of OpenGL ES is nice, but Apple real-

Figure 4.1: Metal apps don’t run on the
iOS simulator. They require a device
with an Apple Ay chip or later. To com-
plete this tutorial, you'll need an A7 de-
vice or newer.

38 Metal API Crash Course

ized it was missing the signature integration of the operating system,
hardware, and software that all good Apple products have. So, it
took a clean-room approach and designed a graphics API specifically
for Apple hardware. The goal was to have low overhead and high
performance while supporting the latest and greatest features.

The result is Metal, which can provide up to 10x the number of draw
calls for your app compared to OpenGL ES.

4.3 Understanding Conceptual Differences

From a development perspective, OpenGL and Metal are similar. In
both, you set up buffers with data to pass to the GPU and specify
vertex and fragment shaders. In OpenGL projects, there is a GLK-
BaseEffect, which is an abstraction on top of shaders. There’s no
such API for Metal, so you need to write shaders yourself. But don’t
worry - it’s not too complicated.

The biggest difference between OpenGL and Metal is that in Metal,
you usually operate with two types of objects:

4.3.1 Descriptor objects and Compiled-state objects

The idea is simple. You create a descriptor object and compile it. The
compiled-state object is a GPU-optimized resource. The creation and
compilation are both expensive operations, so the idea is to do them
as rarely as possible, and later to operate with compiled-state objects.

This approach means that when using Metal, you don’t need to do a
lot of setup operations on the render loop. This makes it much more
efficient than OpenGL which can’t do the same due to architecture
restrictions.

Time to explore the code differences.

4.4 Integrating Metal

Let us assume you have an OpenGL project written in SWIFT. The dif-
ferent sections, will point out functions and definitions that you need
to replace (i.e., convert to equivalent ones defined for Metal). For ex-
ample, if you open ViewController.swift file, and change ViewCon-
troller to be a subclass of UIViewController instead of GLKView-
Controller. In Metal, there’s no such thing as Metal ViewController.
Instead, you have to use MTKView inside the UI'ViewController.

Moving from OpenGL to Metal 39

MTKView is a part of the MetalKit framework. To access this API,
add the following at the top of the file:

1 import MetalKit

4.5 Switching from OpenGL

Now it’s time to do some OpenGL cleanup. Follow these steps:
@ Rename both occurrences of setupGL() to setupMetal()

@ Remove tearDownGL() and deinit() methods (with Metal, there’s
no need for explicit cleanup like this)

Find and remove the whole extension GLKViewControllerDel-
egate, since this view controller is no longer a GLKViewController
(note that glkViewControllerUpdate contains the logic for spinning.
This is useful, but for now, remove it)

@ Remove the following code from the top of setupMetal():

context = EAGLContext(api: .openGLES3)
EAGLContext.setCurrent(context)

if let view = self.view as? GLKView, let context = context {
view.context = context
delegate = self

}

N Ul A~ WN R

@ Remove the following properties from the top of ViewController:

private var context: EAGLContext?
private var effect = GLKBaseEffect()
private var ebo = GLuint()
private var vbo = GLuint()
private var vao = GLuint()

U~ W N R

@ Finally, at the top of the ViewController class declaration, add an
outlet to a MTKView:

1 @IBOutlet weak var metalView: MTKView!

4.6 Setting-up the Storyboard

The ViewController is no longer GLKViewController, so you need
to make some changes in the storyboard.

40 Metal API Crash Course

Open Main.storyboard. In this example, the storyboard contains two
scenes, both named View Controller Scene. One has a GLKView, and
the other one contains a MTKView and a connection to the outlet that
you’ve just added to the source code.

All you need to do is set the scene with the MTKView as the initial
View Controller. Find the scene which doesn’t currently have the
arrow pointing to it. Click on the bar at the top to select the view
controller. Alternatively you can select it in the document outline
pane. Then open the attributes inspector and check Is Initial View
Controller.

Once that’s done, you can delete the first scene.

4.7 Adding Metal

Are you ready? It’s time to use some Metal!

In Metal, the main object that you'll use to access the GPU is MTLDe-
vice. The next most important object is MTLCommandQueue. This
object is a queue to which you'll pass encoded frames.

Open ViewController.swift and add these properties:

1 private var metalDevice: MTLDevice!
2 private var metalCommandQueue: MTLCommandQueue!

Now, go to setupMetal(). Replace the contents of it with the follow-

ing:
1 metalDevice = MTLCreateSystemDefaultDevice()
2 metalCommandQueue = metalDevice.makeCommandQueue()
3 metalView.device = metalDevice

4 metalView.delegate = self

That’s a lot shorter than what was there before right!

This grabs the system default Metal device, then makes a command
queue from the device. Then it assigns the device to the Metal view.
Finally it sets the view controller as the view’s delegate to receive
callbacks when to draw and resize.

Now you need to to implement the MTKViewDelegate protocol.

At the bottom of ViewController.swift, add this extension:

extension ViewController: MIKViewDelegate {

func mtkView(_ view: MTKView, drawableSizeWillChange size: CGSize) { .
}

U W N R

func draw(in view: MIKView) { .
}
}

O O\

This extension implements two methods.

This method is called when the drawable size changes, such as when
the screen rotates. This method is called to perform the actual draw-
ing.

4.8 Basic Drawing

You're all set to draw! To keep things simple, you'll draw a gray
background first.

For each frame you want to draw in Metal, you must create a com-
mand buffer in which you specify what and how you want to draw.
Then, this buffer is encoded on the CPU and sent to the GPU through
the command queue.

Add the following code inside draw(in:):

1
2 guard let drawable = view.currentDrawable else { .
3 return
4 }

5

6 let renderPassDescriptor = MTLRenderPassDescriptor() .
7 renderPassDescriptor.colorAttachments[0].texture = drawable.texture

8 renderPassDescriptor.colorAttachments[0].loadAction = .clear

9 renderPassDescriptor.colorAttachments[0]

10 .clearColor = MTLClearColor(red: 0.65, green: 0.65, blue: 0.65, alpha: 1.0)

11

12

13 guard let commandBuffer = metalCommandQueue.makeCommandBuffer() else { .

14 return

15 }

16

17

18 guard let renderEncoder = commandBuffer .

19 .makeRenderCommandEncoder(descriptor: renderPassDescriptor) else {

20 return

21}

22

23 // Frame drawing goes here .

24 renderEncoder.endEncoding()

25

26 commandBuffer.present(drawable) .

commandBuffer.commit()

N
N

This is a big one. Here’s what is going on in the code above:

Ensure there’s a valid drawable to be used for the current frame.
MTLRenderPassDescriptor contains a collection of attachments that

Moving from OpenGL to Metal

41

42 Metal API Crash Course

are the rendering destination for pixels generated by a rendering pass.
Set the texture from the view as a destination for drawing. Clear ev-
ery pixel at the start of a rendering. Specify the color to use when
the color attachment is cleared. In this case, it's a lovely 65% gray.
Ask the command queue to create a new command buffer. Create
an encoder object that can encode graphics rendering commands into
the command buffer. You'll add your actual drawing code after this
statement later. Declare that all command generations from this en-
coder are complete. Register a drawable presentation to occur as soon
as possible. Commit this command buffer for execution in the com-
mand queue. In summary, you create a command buffer and a com-
mand encoder. Then, you do your drawing in the command encoder
and commit the command buffer to the GPU through the command
queue. These steps are then repeated each time the frame is drawn.

4.8.1 Build and Running Application

The output will be a clear color (i.e., a Metal grey color). This might
not be much, but this shows implementation is running. If you want
to experiment, try changing the MTLClearColor values and rerun-
ning the program.

4.9 Drawing Primitives

It will take some time to draw something more meaningful. So, take
a deep breath and dive right in!

To draw something, you must pass data that represents the object to
the GPU. You already have Vertex structure to represent the vertices
data, but you need to make a small change to use it with Metal.

Open ViewController.swift and change the Indices property from
this:

1 var Indices: [GLubytel]

To this:

1 var Indices: [UInt32]

You'll see why this change is required when drawing primitives.

Figure 4.2: If you're using the simulator,
at this point you'll get a build error. You
need a compatible device to build and
run the app, hence, build and run the
application.

Moving from OpenGL to Metal 43
4.10 Data Buffers

To pass vertices data to the GPU, you need to create two buffers: one
for vertices and one for indices. This is similar to OpenGL’s element
buffer object (EBO) and vertex buffer object (VBO).

Add these properties to ViewController:

1 private var vertexBuffer: MTLBuffer!
2 private var indicesBuffer: MTLBuffer!

Now, inside setupMetal(), add the following at the bottom:

1 let vertexBufferSize = Vertices.size() .
2 vertexBuffer = metalDevice
3 .makeBuffer(bytes: &ertices, length: vertexBufferSize, options:
.storageModeShared)
4
5 let indicesBufferSize = Indices.size() .
6 indicesBuffer = metalDevice
7 .makeBuffer(bytes: &ndices, length: indicesBufferSize, options:

.storageModeShared)

This asks metalDevice to create the vertices and indices buffers ini-
tialized with your data.

Now, go to draw(in:), and right before:

1 renderEncoder.endEncoding()

Add the following:

1 renderEncoder.setVertexBuffer(vertexBuffer, offset: 0, index: 0)
2 renderEncoder.drawIndexedPrimitives(

3 type: .triangle,

4 indexCount: Indices.count,

5 indexType: .uint32,

6 indexBuffer: indicesBuffer,

7 indexBufferOffset: 0)

First this passes the vertex buffer to the GPU, setting it at index o.
Then, it draws triangles using indicesBuffer. Note that you need to
specify the index type which is uint32. That’s why you changed the
indices type earlier.

4.11 Building and Running the Application

Crash! That’s not good. You passed data from the CPU to the GPU.
It crashed because you didn’t specify how the GPU should use this
data. You'll need to add some shaders! Fortunately, that’s the next
step.

44 Metal API Crash Course
4.12 Adding Shaders

Create a new file. Click File > New > File.., choose iOS > Source >
Metal File. Click Next. Name it Shaders.metal and save it wherever
you want.

Metal uses C-like language for the shaders. In most cases, it’s similar
to the GLSL used for OpenGL.

For more on shaders, check the references at the bottom of this chap-
ter.

Add this to the bottom of the file:

struct VertexIn { .

float4 computedPosition [[position]];
float4 color;

1
2 packed_float3 position;

3 packed_float4 color;

4 }

5

6 struct VertexOut { .
7

8

9

I;

You'll use these structures as input and output data for the vertex
shader.

4.12.1 Writing a Vertex Shader

A vertex shader is a function that runs for each vertex that you draw.
Below the structs, add the following code:

vertex VertexOut basic vertex(
const device VertexIn« vertex_ array [[buffer(0) 11,
unsigned int vid [[vertex_id 11) {

VertexIn v = vertex_array[vid]; .

VertexOut outVertex = VertexOut(); .
outVertex.computedPosition = float4(v.position, 1.0);

1 outVertex.color = v.color;

11 return outVertex;

12}

1
2
3
4
5
6
7
8
9
0

The vertex indicates this is a vertex shader function. The return type
for this shader is VertexOut. Here, you get the vertex buffer that you
passed to the command encoder. This parameter is a vertex id for
which this shader was called. Grab the input vertex for the current
vertex id. Here, you create a VertexOut and pass data from the cur-
rent VertexIn. This is simply using the same position and color as the
input. At this point, the vertex shader’s job is done.

Moving from OpenGL to Metal 45
4.12.2 Writing a Fragment Shader
After the vertex shader finishes, the fragment shader runs for each
potential pixel.

Below the vertex shader, add the following code:
fragment float4 basic fragment(VertexOut interpolated [[stage in]]) {

1
2 return float4(interpolated.color);
3

}

The fragment shader receives the output from the vertex shader -
the VertexOut. Then, the fragment shader returns the color for the
current fragment.

4.12.3 Hooking up the Shaders to the Pipeline

The shaders are in place, but you haven’t hooked them to your
pipeline yet. In order to do that, go back to ViewController.swift,
and add this property to the class:

1 private var pipelineState: MTLRenderPipelineState!

This property will contain shaders data.

Now, find setupMetal(). Add the following at the bottom of the

method:
1
2 let defaultLibrary = metalDevice.makeDefaultLibrary()! .
3 let fragmentProgram = defaultLibrary.makeFunction(name: "basic_fragment")
4 let vertexProgram = defaultLibrary.makeFunction(name: "basic_vertex")
5
6
7 let pipelineStateDescriptor = MTLRenderPipelineDescriptor() .
8 pipelineStateDescriptor.vertexFunction = vertexProgram
9 pipelineStateDescriptor.fragmentFunction = fragmentProgram
10 pipelineStateDescriptor.colorAttachments[0].pixelFormat = .bgra8Unorm
11
12
13 pipelineState = try! metalDevice .
14 .makeRenderPipelineState(descriptor: pipelineStateDescriptor)

This is what the code does:

Finds the vertex and fragment shaders by their name in all .metal
files. Creates a descriptor object with the vertex shader and the frag-
ment shader. The pixel format is set to a standard BGRA (Blue Green
Red Alpha) 8-bit unsigned. Asks the GPU to compile all that into the
GPU-optimized object. Now, the pipeline state is ready. It’s time to
use it. For this, go to draw(in:), and right before:

46 Metal API Crash Course

1 renderEncoder.drawIndexedPrimitives(
2 type: .triangle,

3 indexCount: Indices.count,

4 indexType: .uint32,

5 indexBuffer: indicesBuffer,

6 indexBufferOffset: 0)

Add:

1 renderEncoder.setRenderPipelineState(pipelineState)

Build and run. You should get this colorful screen.

4.13 Gradient Background

4.13.1 Matrices

In order to manipulate the scene, you need to pass the projection
and model-view matrices to the GPU. The projection matrix allows
you to manipulate the perception of the scene to make closer objects
appear bigger than farther ones. The model view matrix allows you
to manipulate the position, rotation, and scale of an object or the
whole scene.

In order to use those matrices, you'll create a new struct. Open Ver-
tex.swift. At the top of the file, add:

struct SceneMatrices {
var projectionMatrix: GLKMatrix4 = GLKMatrix4Identity
var modelviewMatrix: GLKMatrix4 = GLKMatrix4Identity

AW N R

Note that you'll still use GLKMatrix4. This part of GLKit is not
deprecated, so you can use it for matrices in Metal.

Now, open ViewController.swift, and add two new properties:

1 private var sceneMatrices = SceneMatrices()
2 private var uniformBuffer: MTLBuffer!

Then, go to draw(in:), and right before:

1 renderEncoder.setRenderPipelineState(pipelineState)

Add:

1
2 let modelViewMatrix = GLKMatrix4MakeTranslation(0.0, 0.0, -6.0) .
3 sceneMatrices.modelviewMatrix = modelViewMatrix

let uniformBufferSize = MemorylLayout.size(ofValue: sceneMatrices) .
uniformBuffer = metalDevice.makeBuffer(

bytes: &sceneMatrices,

length: uniformBufferSize,

options: .storageModeShared)

O N SoNUl B

10
11 renderEncoder.setVertexBuffer(uniformBuffer, offset: 0, index: 1) .

Here’s what the code above does:

Creates a matrix to shift the object backwards by 6 units, to make
it look smaller. Creates a uniform buffer like you did with vertex
buffer before, but with matrices data. Hooks the uniform buffer to
the pipeline and sets its identifier to 1.

4.13.2 Projection Matrix

While you're still in ViewController.swift, inside
mtkView(_:drawableSizeWillChange:), add the following:

1 let aspect = fabsf(Float(size.width) / Float(size.height))
2 let projectionMatrix = GLKMatrix4MakePerspective(

3 GLKMathDegreesToRadians(65.0),

4 aspect,

5 4.0,

6 10.0)

7 sceneMatrices.projectionMatrix = projectionMatrix

This code creates a projection matrix based on the aspect ratio of the
view. Then, it assigns it to the scene’s projection matrix.

With this in place, your square will now look square and not stretched
out to the whole screen.

4.13.2.1 Matrices in Shaders

You're almost there! Next, you'll need to receive matrices data in
shaders. Open Shaders.metal. At the very top, add a new struct:

struct SceneMatrices {
float4x4 projectionMatrix;
float4x4 viewModelMatrix;

S W N R

b

Now, replace the basic_vertex function with the following:

vertex VertexOut basic vertex(.
const device VertexIn« vertex_array [[buffer(0) 11,
const device SceneMatrices& scene matrices [[buffer(1l) 11,
unsigned int vid [[vertex_id 11) {

AW N R

Moving from OpenGL to Metal 47

48 Metal API Crash Course

5
6 floatdx4 viewModeWMatrix = scene_matrices.viewModelMatrix; .
7 float4x4 projectionMatrix = scene_matrices.projectionMatrix;
8
9 VertexIn v = vertex array[vid]; .
10
11
12 VertexOut outVertex = VertexOut(); .
13 outVertex
14 .computedPosition = projectionMatrix * viewModeWMatrix * float4(v.position,
1.0);
15 outVertex.color = v.color;
16 return outVertex;
17}

Here’s what has changed:

Receives matrices as a parameter inside the vertex shader. Extracts
the view model and projection matrices. Multiplies the position by
the projection and view model matrices. Build and run the app. You
should see this:

You should see a square on screen!

4.14 Making the Shape Spin

In the OpenGL implementation, GLViewController provided lastUp-
dateDate which would tell you when the last render was performed.
In Metal, you’ll have to create this yourself.

First, in ViewController, add a new property:

1 private var lastUpdateDate = Date()

Then, go to draw(in:), and just before:

1 commandBuffer.present(drawable)

Add the following code:

1 commandBuffer.addCompletedHandler { _ in
2 self.lastUpdateDate = Date()
3 1

With this in place, when a frame drawing completes, it updates las-
tUpdateDate to the current date and time.

Now, it’s time to spin! In draw(in:), replace:

1 let modelViewMatrix = GLKMatrix4Translate(GLKMatrix4Identity, 0, 0, -6.0)

Moving from OpenGL to Metal 49
With:

var modelViewMatrix = GLKMatrix4MakeTranslation(0.0, 0.0, -6.0) .
let timeSincelastUpdate = lastUpdateDate.timeIntervalSince(Date())

rotation += 90 * Float(timeSincelastUpdate) .
modelViewMatrix = GLKMatrix4Rotate(.
modelViewMatrix,

GLKMathDegreesToRadians(rotation), 0, 0, 1)

O] ONUT A~ W N R

This increments the rotation property by an amount proportional to
the time between the last render and this render. Then, it applies a
rotation around the Z-axis to the model-view matrix.

Build and run the app. You'll see the cube spinning. Success! You
have a Metal spinning cube.

4.15 Where to Go From Here?

Congrats! You've learned a ton about the Metal API! Now you under-
stand some of the most important concepts in Metal, such as shaders,
devices, command buffers, and pipelines, and you have some useful
insights into the differences between OpenGL and Metal.

For more, be sure to check out these great resources from Apple:

* Apple’s Metal for OpenGL Developers is an interesting video for
anyone with OpenGL experience

e Apple’s Metal for Developers page has links to documentation,
videos and sample code

¢ Apple’s Metal Programming Guide

¢ Apple’s Metal Shading Language Guide

* Metal videos from WWDC 2014

¢ Metal videos from WWDC 2015

® Metal videos from WWDC 2016

e Metal videos from WWDC 2017

* Metal videos from WWDC 2018

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

A
Metal

Bibliography

[1] Alan Chalmers and Kirsten Cater. Realistic rendering in real-
time. In Proceedings of the 8th International Euro-Par Conference on
Parallel Processing, Euro-Par '02, pages 2128, London, UK, UK,
2002. Springer-Verlag.

[2] Abhishek Nandy and Debashree Chanda. Introduction to the
game engine. In Beginning Platino Game Engine, pages 1-17.
Springer, 2016.

[3] Joseph A Shiraef. An exploratory study of high performance
graphics application programming interfaces. 2016.

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

Draft - Metal API: Crash Course - Kes

Index

3d graphics, 22

Apple, 35

CAMetalLayer, 24

Command Queue, 24

Data Buffer, 43

Fragment Shader, 24

history, 21, 22
interface, 23

Khronos, 19

Mantle, 22

Metal, 22, 37
MTKView, 39
MTLDevice, 24, 26

OpenGL, 37
OpenGLES, 37

pipeline, 24, 30
programming, 26

swift, 26

Vertex Buffer, 24
Vertex Shader, 24

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

INDEX 55

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

56 Metal API Crash Course

INDEX 57

JYSLIMUSY - 3SIN0D) yser) IV (eI - el

	Introduction and Overview
	About
	Computer Graphics
	Aim of this Crash Course
	Prerequisite (Setting-up Metal API)
	Why Swift?
	Summary

	Background (Apple and Metal API)
	Overview
	History of Metal
	Metal `Interface'
	Steps
	Chapter Review

	Programming
	Overview
	Getting Up and Running
	 Getting Something on Screen

	Moving from OpenGL to Metal
	Overview
	 `Similar' API
	Understanding Conceptual Differences
	Integrating Metal
	Switching from OpenGL
	Setting-up the Storyboard
	Adding Metal
	Basic Drawing
	Drawing Primitives
	Data Buffers
	Building and Running the Application
	Adding Shaders
	Gradient Background
	Making the Shape Spin
	Where to Go From Here?

	Bibliography
	Index

