
TECHNICAL REPORT 1

Generic Convex Collision Detection
using Support Mapping

Benjamin Kenwright

Abstract—A collision detection algorithm that is computationally efficient, numerically stable, and straightforward to implement is a
valuable tool in any virtual environment. This includes the ability to determine accurate proximity information, such as, penetration
depth, contact position, and separating normal. We explore the practical and scalable issues of support mapping for use in detecting
contact information for convex shapes. While support mapping is a popular technique used in common algorithms, such as, GJK, EPA,
and XenonCollide, we demonstrate how to implement an uncomplicated algorithm and identify pitfalls in three-dimensional space. We
explore the scalable nature of the technique for use in massively parallel execution environments and emphasise trade-offs in terms of
performance and accuracy to achieve consistent real-time frame-rates through optimisations.

Index Terms—collision detection, Minkowski, support point, contact information, real-time, iterative, features

F

1 INTRODUCTION

A COMPUTATIONALLY efficient, straightforward and ro-
bust generic collision detection algorithm is essential

in virtual environments. Collision detection is a diverse
area (e.g., broad, narrow, convex, concave, discrete, and
continuous). Typically, narrow phase is the most specific
and most expensive collision process, since the intersection
tests need to be exact while computing detailed contact
data. We focus on convex rigid body bodies in discrete
systems, particularly the support mapping concept and its
application in real-time interactive solutions. The algorithm
not only needs to correctly detect collisions but also generate
accurate contact information, such as, penetration depth
while handling numerical errors.

Due to the immense importance of collision detection al-
gorithms, numerous research has been devoted to the prob-
lem in recent decades. This has produced numerous exciting
and novel solutions, such as, GJK [1], V-Clip [10], Lin-Canny
[9], and I-COLLIDE [3]. Each of these techniques have nu-
merous advantages and disadvantages that evolve around
the understanding of fundamental geometric principles. The
algorithms can be implemented in three-dimensional space
using vector algebra to derive information, such as, face
normals, separating planes, support points, and distances.
However, implementing an algorithm effectively without
incorporating engineering solutions for special cases that is
scalable and easy to understand can be challenging and time
consuming.

We explain the concept of support mapping and its
application in popular collision detection algorithms for
generating accurate narrow phase contact information. We
present experimental results to demonstrate scalability,
practical pitfalls, memory, performance, and hybrid adap-
tations. We provide a simplified real-world implementation
to illustrate the elegant compact nature of the algorithm.

2 RELATED WORK

We show where support mapping sits in terms of other tech-
niques for solving contact and collision problems (Figure

1). Explaining all the collision detection algorithms would
be beyond the scope of this article, instead we show key
algorithms that have been successful and relate to support
mapping approach presented in this article.

A number of algorithms build upon the general support
mapping and Minkowski Difference concept as we use
in this article, such as, Gilbert-Johnson-Keerthi (GKJ) [5],
XenoCollide [14], and Expanding Polytope Algorithm (EPA)
[15]. However, we focus on the algorithms ability to solve
practical problems through hybrid adaptations (i.e., look-up
tables) and through exploitation of technological advance-
ments, such as, the graphical processing unit (GPU). Cube-
mapping has been used to speed-up the look-up method
[12].

Support mapping is a popular technique that is sup-
ported in numerous, open source and commercial physics
engines, such as, Bullet (GJK) Physics Engine [4], Open
Dynamics Engine (ODE) [13], Havoc (GHK variant of GJK).
For a comprehensive evaluation and comparison of physics
engines and their differences, see Boeing and Bräunl [2],
similarly, Kockara et al. [8] provides an overview of the
different collision detection algorithms and differences.

3 OVERVIEW

We demonstrate key concepts that are not always made
explicit with the algorithm and are crucial in practical high
performance narrow phase implementations.

X closest points between pairs of convex polytopes (prox-
imity data)

X contact information (e.g., normal, penetration, contact
point), which includes handling deep penetrations

X degenerate convex shape with holes and concave sub-
elements (i.e., shape vertices and ‘not’ the topology and
geometric face information)

X efficient and can scale well to high poly meshes
X take advantage of coherency between frame updates
X implemented easily without much difficulty

TECHNICAL REPORT 2

Fig. 1. Timeline Overview - Visual illustration of collision detection methods related to support mapping concepts. [A] [11], [B] [5], [C] [9], [D] [10],
[E] [1], [F] [7], [G] [14], [H] [3], [I] [6].

Fig. 2. Tetrahedrons - (a) A complex convex mesh can be subdivided
into tetrahedron wedges using the centroid. (b) The origin has to lay
within one of the open ended tetrahedrons. The calculation of which
tetrahedron is at the heart of the algorithm.

X iterative solution that can provide both accurate and
rough approximations (i.e., less iterations for a rough yet
acceptable solution)

X the algorithm is able to exploit massively parallel archi-
tectures, such as, the graphical processing unit (GPU)

X regional clumping of support points for speed ups
X contact manifold generation (i.e., caching)

4 METHOD

4.1 Fundamental Concepts
Given a convex shape is decomposed of faces, with each
face forming a plane. A point is inside the convex shape if
the point is on the same side of all the faces (i.e., positive
side of the face if all the faces are pointing inwards). Note,
when checking all the faces, if we determine a face that fails
this test results in a non-intersection, this face should be
used as the first check in the following frame to exploit
coherency. Due to the fact that objects only move by small

amounts during each update. For example, if the shape is a
thousand faces, and during the first check it was after 400
checks before determining a face the point is on the wrong
side. However, in the subsequent check, if the objects have
not moved, the check will be the first iteration and would
not need to do the other 999 checks.

4.2 Support Mapping
Support Mapping return the farthest point in some direc-
tion. Hence, if we have a collection of points (i.e., the shape
vertices), we are able to find the point furthest along a spec-
ified direction. The operation can be performed without any
complex mathematical operations using the plane equation
(i.e., essentially the dot product). Additionally, the direction
does not need to be of unit-length, i.e., unit-normal for the
calculations, since we are not interested in the distance only
the further point.

4.3 Support Direction
When using the object centroid as a reference point, the
support direction does not always return a point on the
convex hull.

4.4 Minkowski Difference
The collision detection algorithm is from a concept called the
Minkowski Sum. The Minkowski Sum is a straightforward
concept that we combine with support mapping. For exam-
ple, the Minkowski Sum shapes of two shapes is simply the
addition of all the points in shapeA added to all the points
in shapeB, as shown below in Equation 1:

A+B = {a+ b | a ∈ A, b ∈ B} (1)

TECHNICAL REPORT 3

Fig. 3. Support Mapping - Two dimensional illustration showing prox-
imity considerations when using the shape centroid to find support
points. Importantly, as shown in the figure, the support direction from
the centroid to a vertex does not necessarily return the vertex, but the
the furthest vertex in the specified direction.

If both shapes are convex, the resulting shape is convex.
However, the significance is not in the addition for collision
detection, but in the subtraction, as shown below in Equa-
tion 2:

A−B = {a− b | a ∈ A, b ∈ B} (2)

For clarity, we refer to the subtraction of the Minkowski
Sum, as the Minkowski Difference. We use Support Map-
ping to optimise the generation of the Minkowski difference.
Instead of subtracting every point on one shape from every
other point on another shape to determine the collection
of convex points for the Minkowski difference, we can use
the geometric knowledge of convex shapes. The surface
points in the resulting convex mesh must be support points
(i.e., the furthest point on the resulting Minkowski Differ-
ence and opposite furthest distances when taken from both
shapes).

4.5 Algorithm
The support mapping algorithm works by continually re-
fining the point on the surface of the Minkowski surface.
A basic implementation can be accomplished in two parts.
For the first part, we calculate the centroid and work out
a tetrahedron using basic geometric principles (i.e., dot
and cross product) that contains the origin (see Figure 8).
While the second part, iteratively refines the tetrahedron
by recursively splitting and narrowing down on a surface
plane that is as close to the origin as possible. Once we
have identified the final tetrahedron, we can use Barycentric
coordinates to work out the ratios and points on the original
shape to calculate contact information. The pseudo code
for the algorithm is shown below in Algorithm 4.5, while
a simplified implementation is given in Listing 2.

The algorithm is elegant and straightforward in its
unoptimised form for both two-dimensional and three-
dimensional collision tests. The principle evolves around a
good understanding of geometric principles and common
mathematical operations, such as, the dot and cross product.
When implementing and debugging the algorithm it is
always worth while including engineering asserts to detect
issues, such as, the origin not being within the projected
tetrahedrons area (i.e., possible due to cross product normal
or plane equation calculation distance being wrong but
working for the basic test cases).

Algorithm 1 Support Mapping Algorithm for Calculating
Contact Features.

1: Calculate Minkowski Centroid v0
2: Calculate open ended tetrahedron (v0, v1, v2, v3)
3: while Tetrahedron does not contain origin do
4: Recalculate v1, v2, v3
5: end while
6: while Subdivide tetrahedron face until we cannot get

any closer do
7: Recalculate v1, v2, v3
8: end while
9: If the origin is on the inside of the tetrahedron outer face

we have a collision
10: Barycentric coordinates for origin on the plane made up

of v1, v2, v3 and map it to the original coordinates

4.6 Threading
While objects may not be colliding, we are still able to keep
track of the closest features to exploit coherency. Hence, we
can detect a missed collision after a few iterations, however,
if we use a multi-threaded architecture, we can set a flag to
identify a miss, while leaving the collision detection algo-
rithm to continue searching for closest features to help with
the following frame update (i.e., providing better starting
approximation).

4.7 Graphical Processing Unit (GPU)
Initial misconceptions regarding the GPU is the straightfor-
ward porting of algorithms to exploit the massively parallel
architecture. The GPU unlike the CPU is a single instruction
multiple data (SIMD) architecture. What does this mean? It
means that code with multiple conditional logic, such as,
if statements, and while loops that perform differently for
different data would be worse on the GPU. Essentially, GPU
devote proportionally more transistors to arithmetic logic
units and less to caches and flow control in comparison
to CPUs. Typically, the GPU also has a higher memory
bandwidth compared to a CPU (i.e., the GPU is ideal for
parallel data computations with high arithmetic intensity).

Making the algorithm suitable for the GPU, we need
ensure the code runs the same for each instance across the
large number of cores. That is, the data will be unique for
each collision detection pair, however, the implementation
will run the same number of checks/calculations across
all the cores. For example, if we have a dozen instances
of the algorithm calculating the contact information, and
one of the instances requires twenty iterations while the
other eleven only require five iterations, all the instances
will perform the twenty iterations. However, the algorithm
is flexible enough to allow us to iterate over and over
without affecting the final solution. Similarly, we can limit
the iterations and provide a best guess solution, upon which
in the following update we can use the previous frame as
a starting approximation to help reduce the iteration search
time.

• limit maximum iterations for searching
• feed-forward previous solution as the starting point for

the next frame

TECHNICAL REPORT 4

Fig. 4. Cube-Map Lookup - A similar analogy to the concept presented
by Sathe and Lake [12] who generate a distance cube-map lookup for
surface points, however, we modify the idea to storing support points.
This avoids iterating over a complex mesh to find a support-point for
a given direction. Hence, instead of storing a distance, we store the
support point index for that vertex on the shape surface with the greatest
distance given the specified direction.

4.8 Surface Projection
We decompose the mesh into regions to accelerate the
support mapping search. For example, wrapping the shape
with a sphere or cube that is split into equally sized regions
and determining which points lay within the region (see
Figure 4). When support point searching, we search the pre-
computed surface points rather than iterating over all the
vertices. After finding the closest direction, we have the
support vertex for the mesh. Once approach is to use a
‘lookup’ method - such as, a cube-map arrangement (Figure
4). We also suggest another concept using a ‘binary tree’
arrangement. The binary tree arrangement is to help the
distribution of points. For example, if we have clusters of
points in particular regions, we can add more resolution,
rather than linearly distributing over the whole shape area
with a cube/sphere map lookup. However, this incurs a
marginal cost compared to the instant lookup of a cube-map.
Since we need to recursively subdivide the partitions into
binary spaces. For instance, if we have 1024 segments, we
would need to do 10 tests (i.e., 210) to reach target support
point. This speed comparison is small compared to the brute
force approach, however, it is worth mentioning as it can be
important for complex meshes with high poly counts (e.g.,
graphical render meshes).

4.9 Binary Tree Organisation
Organising the shape support mapping using a binary tree
requires extra pre-processing. Naively splitting the vertices
into quadrants is incorrect (Figure 3). We use the cube-map
concept, however, for regions where all the neighbours are
identical, we remove the lookup points. For regions with
different neighbours we subdivide and search the inner cen-
tre. Recursively, subdividing the surface quadrants until we
reach a maximum limit or each quadrant contains corners
of identical lookup indexes. Hence, the support mapping
direction binary tree search allows us to very efficiently
locate the correct vertex almost instantly (i.e., compared to
iteratively searching over hundreds or thousands of ver-
tices). While the binary tree look provides a more efficient
organisation of the lookup data and scales better for non-

Fig. 5. Binary Search - The binary search organisation expands upon
the lookup concept shown in Figure 4, however, the points are organised
to distribute the resolution across the surface.

Fig. 6. Brute Force - Number of Object-Object Collision Tests vs
Time for Varying Numbers of Vertices - Support mapping perfor-
mance metrics illustrating the linear relationship between vertices and
time.

linearly distributed surface meshes at the cost of more
iterations to identify the surface quadrant.

5 EXPERIMENTAL RESULTS

We perform a number of fundamental experiments to pro-
vide to the reader essential information about the algorithm,
such as, performance, accuracy, and limitations. Prelimi-
nary baseline results, using general shapes, large numbers
of simple shapes (e.g., cubes), large numbers of complex
shapes (e.g., high poly graphical meshes), apply the solution
to a dynamic situation (e.g., physics simulator). Secondary
results, that use enhancements or modifications, such as,
GPU/coherency, and surface projects.

Generating random convex shapes, we can plot an ap-
proximation of time verses the number of intersection tests
for different shape complexities. As shown in Figure 6, this
shows a linear relationship between vertices and intersec-
tion tests. Hence, we approximate the time for a specified
number of vertices and intersections by Equation 3:

t = n c (3)

where t is time, n is the number of vertices, and c is the
number of intersection checks.

5.0.0.1 Level of Detail: This basic demonstration of
the support mapping in action for deriving collision and
contact information leads to a number of modifications.

TECHNICAL REPORT 5

Fig. 7. Binary Tree Support Mapping Optimisation - Number of
Object-Object Collision Tests vs Time for Varying Numbers of
Vertices - Support mapping performance metrics illustrating the linear
relationship between vertices and time.

For simple tests (e.g., cubes with 8 vertices), we are able
to perform a large numbers of collision tests (e.g., 10,000),
while remaining at real-time speeds (30+ fps). Combining a
level of detail methodology to the algorithm would enable
a basic speed-up enhancement. For example, performing a
basic sphere-sphere check, followed by a cube-cube, then a
low-poly an finally the higher poly-mesh.

5.0.0.2 Binary Tree: The computational slow-down
of the support algorithm shown in Figure 6 for increased
number of vertices is due to the ‘linear’ iterative search al-
gorithm within the support function. For an uncomplicated
implementation, the support point is found by iterating over
‘all’ the vertices. Hence, by quickly identifying individual
groups of vertices within the shape, we can achieve a
dramatic speed-up. Most importantly, this would break the
coupled dependency between vertex counts and computa-
tional speed. This would modify the original Equation 3,
changing ‘n’ to a constant based upon the search algorithm.
Where a binary tree organisation enables us to exponentially
cull large numbers of vertices with a minimal cost to identify
groups of vertices for the support mapping tests.

5.0.0.3 Engineering Issues: The algorithm offers a
stable solution for calculating reliable contact information
even in the face of numerical limitations, such as floating-
point round-off, which can cause many geometric algorithm
implementations hang, crash, or produce nonsensical out-
put if sufficient measures are not included. The proposed
technique is adaptable to speed up calculations that do
not always need to be exact, but must satisfy some error
bound. The implementation of a generic algorithm, as we
have presented here, can be combined with an algorithmic
model for pre-defined shapes as done with Xenocollide [14]
instead of depending on the level of detail of the collision
mesh.

6 CONCLUSION

We have explained and demonstrated the well known sup-
port mapping concept for use in writing a general robust
convex collision detection algorithm for narrow phase in-
tersection tests. The algorithm is able to handle degenerate

Fig. 8. Phase One - Phase one is to find tetrahedron for using the shape
centroid that contains the origin (i.e., Minkowski shape).

Fig. 9. Phase Two - Phase two is to refine the tetrahedron from by
recursively subdividing the face (i.e., keep the shape centroid) until we
are unable to subdivide any-more and then we have our answer.

shapes (i.e., point cloud shapes or concave meshes) to pro-
vide reliable feature information, such as, contact location
and penetration depth. The algorithm on its own is simple
to understand and implement. As we have shown in this
paper, the algorithm can be combined with optimisation
techniques, such as, look-up tables and binary trees to make
the algorithm a viable solution even for large complex
meshes. In addition, the algorithm is suited to massively
parallel architectures to enable the calculation of narrow
phase contact information for large numbers of objects.

struct SupportPoint
{
SupportPoint(const Vector3& pp, // support point
const Vector3& nn, // support normal
const Vector3& aa, // point on shapeA
const Vector3& bb) // point on shapeB
: p(pp), n(nn), a(aa), b(bb) {};
Vector3 p;
Vector3 n;
Vector3 a, b;
};
SupportPoint GetSupportVertex(const Shape∗ sA,
const Shape∗ sB, const Vector3& n)
{
Vector3 v0 = sA−>GetSupportVertex(n);
Vector3 v1 = sB−>GetSupportVertex(−n);
return SupportPoint(v0−v1, n, v0, v1);
}// End GetSupportVertex(..)

Listing 1. The minkowski difference (i.e., convex surface), is calculated
using the opposite support directions. We need to store the support
mapping points to recover proximity information at the end (e.g., contact
position, penetration depth, and separating normal).

bool Collision(const Shape∗ shapeA,
const Shape∗ shapeB,
float& outPenetrationDepth,
Vector3& outContactPoint,
Vector3& outContactNormal)
{
const Vector3 origin (0,0,0); // our target!

TECHNICAL REPORT 6

//
// ∗∗∗∗ PHASE 1 ∗∗∗∗ see Figure 8
//
SupportPoint v0 = SupportPoint(shapeA−>GetCentroid() −←↩

shapeB−>GetCentroid(),
Vector3(0,0,0), Vector3(0,0,0), Vector3(0,0,0));

SupportPoint v1 = GetSupportVertex(shapeA, shapeB, origin−v0.p)←↩
;

SupportPoint v2 = GetSupportVertex(shapeA, shapeB, Cross(origin←↩
−v0.p, origin−v1.p));

Vector3 dir3 = Cross(v1.p−v0.p, v2.p−v0.p);
if (Dot(dir3, v0.p − origin) > 0) dir3 = −dir3;
SupportPoint v3 = GetSupportVertex(shapeA, shapeB, dir3);

// v0, v1, v2 and v3 form a tetrahedron − however, we need to do
// a bit of looping around to ’ensure’ the tetrahedron
// encloses the origin
while (true)
{
if (Dot(Cross(v1.p−v0.p, v3.p−v0.p), v0.p−origin) < 0)
{
v2 = v3;
v3 = GetSupportVertex(shapeA, shapeB, Cross(v1.p−v0.p, v3.p−v0.←↩

p));
continue;
}
if (Dot(Cross(v3.p−v0.p,v2.p−v0.p), v0.p−origin) < 0)
{
v1 = v3;
v3 = GetSupportVertex(shapeA, shapeB, Cross(v3.p−v0.p, v2.p−v0.←↩

p));
continue;
}
break;
}
//
// ∗∗∗∗∗∗ PHASE 2 ∗∗∗∗∗∗ see Figure 9
//
while (true)
{
// Find support point using the tetrahedron face
SupportPoint v4 = GetSupportVertex(shapeA, shapeB, Cross(v2.p −←↩

v1.p, v3.p − v1.p));

// Is our new point already on the plane of our
// triangle, we’re already as close as we can get to the target
float delta = Dot((v4.p − v3.p), v4.n);
if (abs(delta) < 0.001f)
{
Vector3 n = Normalize(v4.n);
// Compute distance from origin to the wedge face
outPenetrationDepth = Dot(n, v1.p−origin);
break;
}
// We’ll create three baby tetrahedrons and decide
// which one will replace the current tetrahedron
// v1v2 − v2v3 − v3v1 − current tetrahedron edges
// leads to 3 new tetrahedrons:
// v1v2v4
// v2v3v4
// v3v1v4
while (true)
{
Vector3 na = −Cross(v2.p−v0.p, v4.p−v0.p);
Vector3 nb = −Cross(v4.p−v0.p, v1.p−v0.p);
if (Dot(na, v0.p−origin) > 0 &&
Dot(nb, v0.p−origin) > 0)
{ // Inside this tetrahedron
v3 = v4;
break;
}
na = −Cross(v3.p−v0.p, v4.p−v0.p);
nb = −Cross(v4.p−v0.p, v2.p−v0.p);
if (Dot(na, v0.p−origin) > 0 &&
Dot(nb, v0.p−origin) > 0)
{ // Inside this tetrahedron
v1 = v4;
break;
}
na = −Cross(v1.p−v0.p, v4.p−v0.p);
nb = −Cross(v4.p−v0.p, v3.p−v0.p);
if (Dot(na, v0.p−origin) > 0 &&
Dot(nb, v0.p−origin) > 0)

{ // Inside this tetrahedron
v2 = v4;
break;
}
// Should never get here − as it must be in
// one of the children!
DBG ASSERT(false);
break;
}

}// End while (true)

// Barycentric coordinates to map from the minkowski
// difference onto the original shape
outContactPoint = MapPointOrigin(v1.p, v2.p, v3.p,
v1.a, v2.a, v3.a);

if (outPenetrationDepth < 0) return false; // No Hit

return true; // Hit
}// End Collision

Listing 2. An example implementation of the support mapping algorithm
for finding the closest point between two convex shapes, in addition
to the penetration depth, contact normal, and contact point. The
uncomplicated nature of the algorithm means we can implement a
working model without difficulty that is able to provide robust contact
information for programs, such as, physics simulators.

REFERENCES

[1] Gino van den Bergen. A fast and robust gjk implementation for
collision detection of convex objects. Journal of graphics tools, 4(2):7–
25, 1999. 1, 2

[2] Adrian Boeing and Thomas Bräunl. Evaluation of real-time
physics simulation systems. In Proceedings of the 5th international
conference on Computer graphics and interactive techniques in Australia
and Southeast Asia, pages 281–288. ACM, 2007. 1

[3] Jonathan D Cohen, Ming C Lin, Dinesh Manocha, and Madhav
Ponamgi. I-collide: An interactive and exact collision detection
system for large-scale environments. In Proceedings of the 1995
symposium on Interactive 3D graphics, pages 189–195. ACM, 1995. 1,
2

[4] Erwin Coumans. Bullet physics engine. Open Source Software:
http://bulletphysics. org, 2010. 1

[5] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast
procedure for computing the distance between complex objects in
three-dimensional space. Robotics and Automation, IEEE Journal of,
4(2):193–203, 1988. 1, 2

[6] Nicolin Govender, Daniel N Wilke, and Schalk Kok. Collision
detection of convex polyhedra on the nvidia gpu architecture for
the discrete element method. Applied Mathematics and Computation,
2014. 2

[7] Naga K Govindaraju, Stephane Redon, Ming C Lin, and Dinesh
Manocha. Cullide: Interactive collision detection between com-
plex models in large environments using graphics hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 25–32. Eurographics Association, 2003. 2

[8] Sinan Kockara, Tansel Halic, K Iqbal, Coskun Bayrak, and Richard
Rowe. Collision detection: A survey. In Systems, Man and Cyber-
netics, 2007. ISIC. IEEE International Conference on, pages 4046–4051.
IEEE, 2007. 1

[9] Ming C Lin and John F Canny. A fast algorithm for incremental
distance calculation. In Robotics and Automation, 1991. Proceedings.,
1991 IEEE International Conference on, pages 1008–1014. IEEE, 1991.
1, 2

[10] Brian Mirtich. V-clip: Fast and robust polyhedral collision detec-
tion. ACM Transactions on Graphics (TOG), 17(3):177–208, 1998. 1,
2

[11] Matthew Moore and Jane Wilhelms. Collision detection and re-
sponse for computer animation. ACM Siggraph Computer Graphics,
22(4):289–298, 1988. 2

[12] Rahul Sathe and Adam Lake. Rigid body collision detection on
the gpu. In ACM SIGGRAPH 2006 Research posters, page 49. ACM,
2006. 1, 4

[13] Russell Smith et al. Open dynamics engine. 2005. 1
[14] Gary Snethen. Xenocollide: Complex collision made simple. Game

Programming Gems, 7:165–178, 2008. 1, 2, 5
[15] Gino Van Den Bergen and Gino Johannes Apolonia van den

Bergen. Collision detection in interactive 3D environments. Elsevier,
2004. 1

	Introduction
	Related Work
	Overview
	Method
	Fundamental Concepts
	Support Mapping
	Support Direction
	Minkowski Difference
	Algorithm
	Threading
	Graphical Processing Unit (GPU)
	Surface Projection
	Binary Tree Organisation

	Experimental Results
	Conclusion
	References

