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Abstract

This chapter presents a nature–inspired computing optimisation algorithm. The computa-
tional algorithm is based upon the patterns and behaviours of the extraordinary and un-
der–appreciated Gastropod Mollusc (or Slug). The slug which has been around since the
ice–age, belongs to a fascinating and complex group of creatures whose biology is every bit as
interesting and worthy of admiration as Earth’s more loved and head line grabbing species. As
we explain in this chapter, slugs are simple creatures but are able to solve complex problems
in large groups (one of nature’s evolutionary triumphs). These abilities form the underpin-
nings of the ‘slug optimisation algorithm’ (SOA) presented in this chapter. What is more, the
optimisation algorithm is scalable and can be implemented on massively parallel architectures
(like the graphical processing unit). While algorithms, such as, the firefly, cockroach, and
bee, have proven themselves as efficient methods for finding optimal solutions to complex
problems, we hope after reading this chapter the reader will take a similar view on the slug
optimisation algorithm.

Keywords: optimisation, adaptive, automation, nature-inspired, smart, evolutionary, pop-
ulation, gastropod mollusc, slug, algorithm

1 Introduction

Why is optimisation important? Optimisation is the process of making the best or most
effective use of a situation or resource and as such is a vital aspect of almost every discipline
from construction [19] to animation [13]. However, the search for optimality in many cases
is highly challenging due to the complexity of the problems. For instance, some optimisa-
tion algorithm do not necessarily guarantee optimality will be reached. One measure of an
optimisations ‘quality’ is its efficiency (e.g., computational cost, search time, and memory
overhead). While algorithm, such as, the classical hill–climbing [27, 17] or steepest decent
[7] method are efficient solutions for ‘local’ optimisation problems, they suffer limitations
when exploring global landscape. One of the most important measures is ‘time’ (i.e., some
algorithms due to the probabilistic nature may converge on a solution but may require huge
amounts of computational power and take long durations). These challenges are truncated
by the complexity of the optimisation problems and in many cases may be multi–modal and
non–linear which can only be solved using ‘global’ optimisation methods. Of course, these
global problems are very challenging. Research has suggested that one promising solution
to these challenging problems is through meta–heuristic algorithms, like the particle swarm
optimisation (PSO) and evolutionary differential algorithm [25, 24, 11].
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What is a meta–heuristic algorithm? A large number of meta–heuristic algorithms are
inspired by nature [25]. For example, the genetic algorithm which follows a survival of the
fittest analogy with genes from the strongest individuals leading to the most popular choice
[4]. Another popular example, is the particle swarm optimisation (PSO), with variations of
this including, the firefly algorithm [24] (inspired by the flashing behaviour of fireflies) and
ant–colony algorithm [5]. These meta–heuristic algorithms in one form or another have been
applied to almost all areas of optimisation [25, 21, 24] (e.g., timetabling [15], manufacturing,
biology and video games [11]). In this chapter, we extend the population–based analogy
to create a novel meta–heuristic slug optimisation algorithm. We explain the algorithm
and its practical applications for solving global non–linear functions. We provide benchmark
performance data for the algorithm and compare our technique against a variety of challenging
non–linear problems. In particular, our algorithm has a number of in inherent advantages:
parallelizable (i.e., ported to massively parallel architectures, such as, the GPU); simple
and intuitive to implement and understand; solve non–linear, multi–modal, multi–objective
problems; while being relatively robust and efficient.

How do population and evolutionary based optimisation techniques work? The
metaheuristic algorithms presented in this chapter is a non–deterministic optimization tech-
nique. Many people do not realize that a stochastic algorithm is nothing else than a random
search, with hints chosen through heuristics (or meta–heuristics) functions to guide the solu-
tion towards the most probable answer. People who realize this feel uneasy about stochastic
algorithms, because there is no guarantee that the algorithm (based on random choices)
will find the global optimum [3]. However, as we and others have shown, these ‘probabilistic’
optimisation algorithms have proven themselves in a number of real–world situations [25, 24].

What does optimisation have to do with ‘slugs’? Slugs have been around since the
ice–age and are more important and common we know. For instance, a vegetated area (such
as, a garden or a field), will possess on average 200 slugs per square metre. Slugs detect food
by smell: the four tentacles on their head contain chemoreceptors that pick up chemicals in
the air, just as your nose does. Importantly, a slug is able to find odors over large distances, as
invertebrates have an amazing sense of smell, plus are often attuned to different odors. [16]).
According to horticultural experts, it is estimated that an acre of farmland may support
over 250,000 slugs. Slugs but they are perfectly capable of ‘communicating’ the
whereabouts of food. Slugs are efficient feeders in addition to having a long evolutionary
history. These invertebrates have been around for millions of years and have managed to
colonise a huge variety of ecological niches – just about anywhere, in fact, where there is
water and something to eat, you will find a type of slug. Although soft and seemingly fragile,
slugs are actually quite robust little creatures and are able to survive freezing weather and
temporary droughts. While slugs do not have language in any conventional sense, they are
able to ‘communicate’ the whereabouts of food, for instance, through fragrances, taste and
slime trails [8]. An interesting behavioural phenomenon that has been observed is
slugs tend to keep company when feeding. For example, several common garden slugs
would feed on one piece of food together, even if there are other food sources available. In
addition to navigating to new source of food, slugs possess a “homing instinct” to find their
way back to a patch of ground.

Chapter’s Contribution The key contributions of this chapter are: (1) a efficient opti-
misation algorithm based on nature; (2) the innovative algorithm is able to solve a variety of
real–world tasks; (3) demonstrate the algorithms scalability on massively parallel architec-
tures (e.g., Graphical Processing Unit); (4) as we show in this chapter the proposed algorithm
is capable of revealing an effective performance improvement; (5) the proposed Gastropod
Mollusc (or Slug) Optimisation Algorithm (or SOA) can be utilized to provide insight into
various engineering problems (6) importantly, this chapter provides benchmarking data on a
variety of formidable test cases to show the viability of the proposed bio–inspired technique.
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Figure 1: Patterns - (a) The common garden ‘slug’ (and other terrestrial gastropods) use the
non–linear viscoelastic properties of excreted trail mucus for transitory attachment, allowing
locomotion on inclined surfaces [6]. (b) The behavioural properties play an important role
in numerous biological functions, for instance the locomotion strategy used by terrestrial
gastropods – which we use in this chapter to develop the optimisation technique. (c) The
nature–inspired embodiment of the exploratory properties for searching and finding optimal
solutions for complex discontinuous multi–modal problems.

2 Related Work and Background

Slugs do play an important role in ecology. Slugs not only help with breaking down dead
vegetation using their rasping tongue (called a radula), they also consume vast quantities of
decaying vegetation, such as, the dead leaves after autumn. Slugs are a type of gastropod
which forms the second largest class in the animal kingdom, the largest being the insects.
Slugs are hermaphrodite, having both male and female reproductive organs. 95% of slugs are
underground, nibbling on seeds and roots and breeding.

Optimality is an important and challenging subject in many fields. This includes, factors
such as, efficiently (time and complexity), not to mention, computational cost – which form
the measure of comparability between algorithms.

Many optimisation algorithms are only effective at finding ‘local’ optimal solutions (e.g.,
gradient–based algorithms like, steepest decent and hill–climbing).

Global optimisation problems are often required for ‘multi–model’ and ‘highly non–linear’
problems. These optimisation problems are often extremely challenging (especially for prob-
lems with large numbers of parameters). Of course, recent research into meta–heuristic al-
gorithms have suggested that population based optimisations are promising for solving these
tough optimisation problems [26].

Heuristics vs Meta–heuristics Optimization algorithms can be roughly divided into two
categories: exact algorithms and heuristics [18]. The meta–heuristics techniques are prob-
lem–independent and as such, do not take advantage of any specificity of the problem – so
are ideal for black box methods (meta–heuristic techniques are methods that optimizes a
problem by iteratively trying to improve a candidate). Meta–heuristics build upon the ideol-
ogy of heuristics to formulate approximate search methods for solving complex optimization
problems that arise in business, commerce, engineering, industry, and many other areas.
For instance, meta–heuristic algorithms guide subordinate heuristic concepts from artificial
intelligence, biological, mathematical, natural and physical sciences to improve their perfor-
mance. As we show in this chapter, most successful meta–heuristics algorithms in use today
are nature–inspired.

Global vs Local Optimisation As we have explained, the optimization process attempts
to find a solution that minimizes a function. This optimisation process is subdivided into
local and global paradigms. For local search solutions the nearby data is used to steer the
optimisation solution, while global solutions include all feasible data in the search criteria.
Crucially, the distinction between global search and local search can be very subtle. For
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Figure 2: Slug Anatomy - A slug anatomy guide to help visualize and identify biological
concepts.

example, many global search techniques such as, particle swarm optimisation (PSO) have
their parameters adjusted to focus more on local search (e.g. higher constriction to limit
the speed and movement of particles). While local search techniques are often thought of
as “greedy”, we must remember, global search techniques often employ elitism (e.g. genetic
algorithm, differential evolution and particle swarm optimisation) which display aspects of
greediness.

Deterministic or Probabilistic A search technique which always reaches the same locally
optimal solution from the same starting point is probably a local search technique. Equally,
the performance of a global search technique should be less dependent on its initial position(s).
Whereas a local search technique will target nearby local optima, global search techniques
should be able to find (local) optima anywhere in the search space.

3 Slug Optimisation Algorithm

The Slug Optimisation Algorithm (SOA) is based upon the exploratory, behavioural and
navigatory patterns of slugs. The SOA algorithm is a population based global optimization
algorithm. The slug is a valuable source of inspiration, for example, each slug pursues needs
which are influenced by sensory input (smell and swarm state), while at the same time
randomly exploring and searching. The slugs’ needs are determined by the landscape and
their objective function.

The motion of each slug is influenced by the success rate ‘shared’ by other slugs within
the population (e.g., found food, but how many have found food, and is the resource over
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Figure 3: Sub–Sample - Each character selects a sub–sample from the population to pro-
vide approximate numerical characteristics of the overall population to steer the individuals
decision.

subscribed, speed of the change from the current to the new).

xt+1
i = xti + vti (1)

where x is an individual within the population (identified by i), t is the evolution number,
and v is the velocity (motion) by which to change the current individual (i.e., v denotes slugs
migration direction based on the slugs state and behavioural pattern).

Slugs interact with peers and respond to their immediate environment and make decisions
based on their interaction, such as, selecting shelter, searching for food sources and friends,
dispersing when danger is noticed and limiting reproduction when food is scarce. Key chal-
lenge in non–linear multi–modal optimisation solutions that use global techniques is the
algorithm may converge on small regions or get trapped in local valleys – making it difficult
for the algorithm to find the ‘true’ global minimum. Well established algorithms, like sim-
ulated annealing [14], require careful tuning to ensure the algorithm does not ‘prematurely’
converge on a local optimal while begin able to ‘escape’ any local modes/valleys.

1. Hunger Behaviour (migrates from its comfortable shelter and friends company to look for
food)

2. Explore (Dispersion) behaviour (altruistic behaviours such as cooperative breeding, which
restricts the dispersal of individual helpers potentially limit the slugs reproductive success)

3. Other Behaviour (e.g., Sleep, Random and Chase)

The ‘three’ states of the algorithm help resolve issues. The rational and reasoning as to why
the states help with optimisation include:

• Hunger state – explores possible ‘optimal’ regions (quickly narrow down solutions)
• Explore state – enables individuals to ‘escape’ local minimums (i.e., move away and explore

the larger landscape)
• Other state – introduces chaotic element (e.g., random phenomenon). For example, the

randomization increases the diversity of the solution during each iteration

The proposed SOA algorithm is outlined in Algorithm 2:
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Algorithm 1: SOA Definitions.

1 Input/Definitions
2 Global
3 Fitness function: f(x) [0 to 1]
4 Population size: N [100 to 1000]
5 Problem dimensions: D [1 to 100]
6 Crossover mutation: CR [0 to 1]
7 Sample size: S [3 to 10]
8 Epoch count: t [0 to infinity]
9 Individuals:

10 Individual index: i [0 to N–1]
11 Hunger counter: H [1 to 10]
12 Explore counter: E [1 to 10]

Figure 4: States – The behaviour
pattern of our virtual slug is repre-
sented by three states.

The innovative SOA possesses the enhanced potential for handling both deep and explorative
landscapes.

Figure 5: Population Fitness - Graphical visualisation of the population fitness over mul-
tiple generations (10,100,1000). (Population size = 100, Rastrigin function).

(1) Initialise slug population with uniform distributed random numbers and set all parameters
with values (2) For each individual: (3) – Select number of samples from population (not
same as each other or the current individual) (4) Perform chase–swarming (5) Perform hunger
behaviour (6) Perform dispersion behaviour (7) Repeat the loop until stopping criterion is
reached

Cultivation reduces slug numbers slugs pick the best time for a sex change New Scientist:
Slugs are able to fine–tune their sex–change to ensure they make best use of the available re-
sources (this also includes which slugs grow the quickest). Incorporate this into the algorithm
– where more prosporous areas spawn more children/fertile parents.

Compare against ‘random’: uniform distribution focused test cases novel test cases

Algorithm: 1. Algorithm begins with a random population 2. Algorithm evolves incremen-
tally (generations) 3. Logical structure for the motion (adaptation) of individuals: (repro-
duction, mutation, randomness) 4. If the new individual is better – replace the original
(‘stability’) – if the individual is the same – don’t modify (often overlooked)

This chapter has presented a novel algorithm based on the bio–inspired observations of how
slugs adapt and solve every day problems. The preliminary results from the algorithm show
promising possibilities

The following observations may be beneficial to realize why SOA is able to perform so well:

• The underlying behavioural pattern enable the solution to vastly lay emphasis on explo-

6



Algorithm 2: SOA Listing.

1 Initialize population
2 Initialize parameters
3 while not met criteria do [max iterations, fitness tolerance] do
4 for every member of population [i to N–1] do
5 Select S mutually exclusive individuals from population
6 Set xα as the best slug from S
7 Set xβ as the worst slug from S
8 Increment hunger counter h for xi
9 Increment explore counter e for xi

10 . hunger counter triggered
11 if ( xi[h] > H ) then
12 v = (xα–xi)
13 end
14 . explore counter triggered
15 else if ( xi[e] > E ) then
16 v = (xβ–xi)
17 end
18 . otherwise random behaviour (e.g., sleeping/mutating)
19 else
20 v = random individual
21 end

22 R = RandomInteger(0, D–1)

23 for d = 0 to D–1 do
24 if ( d == R||RandomReal(0, 1) < CR ) then
25 xi(t+ 1)[d] = xi(t)[d] + v[d]
26 end

27 end

28 if ( xi[h] > H ) then
29 xi[h] = RandomInteger(0,H)
30 end
31 else if ( xi[e] > E ) then
32 xi[e] = RandomInteger(0,E)
33 end

34 . keep best candidate (i.e., new or original)
35 if ( f(xi(t)) ) < f(xi(t+ 1)) ) then
36 xi(t+ 1) = xi(t)
37 end

38 end
39 Set t = t+ 1

40 end
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ration in the initial steps and exploitation on last iterations
• SOA preserves the key superiorities of population diversity of multiple generations
• When SOA converges to a local optimal, the exploratory behaviour helps it to jump out

of these trenches and travel in the direction of new improved locations
• The chaotic element of the algorithm helps increase the diversity of individuals over the

duration of the iterative evolution of the population

Figure 6: Optimisation Function - Optimisation functions shown here in their
two–dimensional form to illustrate the challenges (e.g., multiple local minimums and
non–linear landscape). Note, functions, such as, the Rastrigin and Styblinski–Tang func-
tion allow multiple dimensions so we are able to perform more extreme simulations.

4 Massively Parallel Architectures

The SOA is able to be ported to massively parallel architectures (such as, the Graphical
Processing Unit (GPU)). This enables the algorithm to take full advantage of the systems
resources and reduce computational times. The algorithm is highly suited to parallel archi-
tectures due to the nature of the algorithm (i.e., population based whereby each individual
performs the same calculation on different data). The GPU is highly suited to ‘single instruc-
tion multiple data’ (SIMD) operations. To avoid ‘bottlenecks’ or ‘stalls’ when updating the
population (e.g., reading/writing to the same location) – we double buffer the population for
parallel implementation. This means the entire population is able to be updated in parallel
without any locking dependencies (i.e., read data from the old population memory location
and write the new population to a new memory location). After calculating the new popula-
tion, we simply ‘flip’ the memory locations, so the current population becomes the reference
data for the next population.

Common challenges when implementing a parallel solution (on the GPU), include:

• random number generation
• complexity of the algorithm (avoid conditional logic due to the SIMD architecture)
• memory access issues (cache/local/global memory)
• ‘bubbles’ the slowest calculation will stall the entire population evolving

Importantly, the speed–up will depend on the optimisation problem. However, for a large
number of problems, the GPU offers huge improvements. As shown in the literature [11, 2, 12]
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multiple optimisation problems using population based algorithms have successfully been
ported to massively parallel architecture.

For example, previous evolutionary algorithms that have exploited massively parallel archi-
tectures, include: Wong et al. [23], who was one of the first researchers to develop a fine
grained master–slave implementation on the GPU (evolutionary algorithm with fitness, mu-
tation and reproduction on the GPU, while the CPU performed the selection and competition
calculations). Later Wong et al. [22], implemented a version of the genetic evolutionary algo-
rithm that run solely on the GPU (i.e,. all except the random number generation). Of course,
with the introduction and adoption of CUDA and OpenCL a whole range of applications have
been developed for the GPU. From deep learning algorithms, sparse matrix solvers, sorting
algorithms, and physics–based simulators [20]. Our parallel implementation was written in
Visual Studio (2015) using C++ and the CUDA 8.0 API. The hardware used to carry out the
parallel simulations was a NVidia GeForce GT 750M. The GPU kernel would perform the
epoch multiple times (i.e., would not need any interference or data from the CPU during the
evolving of the population). The algorithm would continue to evolve the population until the
some predefined criteria, such as, maximum iterations or the fitness solution was within some
specified tolerance. Each thread updated an individual within the population. The updated
individual is placed in the secondary memory location to avoid any deadlocks. Each individ-
ual is able to see all the population of the ‘previous’ generation (memory) to provide informed
information for the individual in the ‘next’ generation (memory). Crucially, our algorithm is
able to operate completely on the GPU (i.e., no–need to switch the population or data back
and forth between the CPU and GPU for sorting/evaluating/randomizing). Similar to Arora
et al. [1], we seed the initial population (individuals) with a random value (i.e., the stan-
dard ‘C’ programming language rand() function [9]). This uncomplicated number generator
produces a random value based upon the seed and a maximum limit (Linear Congruential
Generator (LCG)). While there are a number of built in custom CUDA RAND libraries [9],
the LCG function enabled full control over sequential–parallel implementations/comparisons.
Even if the random number is not cryptographically secure, it provides an efficient solution
for the simple task of randomizing our evolving population values.

5 Experimental Results

We apply the optimisation algorithm to a number of popular global optimisation benchmark
functions [10] (e.g., Rastrigin and Styblinski–Tang). Figure 6 shows a graphical illustration
of the different search spaces for the 2–dimensional variations.

Rastrigin Function The Rastrigin function is a popular (non–linear multi–modal)
non–convex function used as a performance test problem for optimization algorithms (see
Figure 6(c)). Finding the minimum of this function is a fairly difficult problem due to its
large search space and its large number of local minima (see Equation 2).

f(x) = An+

n∑
i=1

[
x2i –A cos(2πxi)

]
(2)

where A = 10 and xi ∈ [–5.12, 5.12]. The global minimum is at x = 0 where f(x) = 0. The
simulation results for the SOA for solving the Rastrigin function are shown in Figure 7.

Sixth Bukin Function The sixth Bukin function is a two dimensional optimisation prob-
lem with multiple local minima, all of which lie in a ‘ridge’ (see Equation 3).

f(x1, x2) = 100
√
|x2–0.01x21|+ 0.01|x1 + 10| (3)

The function is evaluated in the region: x1 ∈ [–15, 15], x2 ∈ [–3, 3] and has a global minimum
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Figure 7: Rastrigin Function - SOA simulations for different situations: (a) single dimen-
sional problem and (b) multiple dimensional simulations [10, 50 and 100]. (Population size
= 100).

at f(–10, 1) = 0 (see Figure 6(b)). Simulation results for the Sixth Bukin Function shown in
Figure 8.

Figure 8: Sixth Bukin Function - SOA simulations (multiple–reruns). (Population size =
100).

Styblinski–Tang Function The Styblinski–Tang function (shown in Equation 4) is a
multi–dimensional optimisation problem (see Figure 6(a)).

f(x) =
1

2

n∑
i=1

(
x4i –16x2i + 5xi

)
(4)

The function is evaluated in the range xi ∈ [–5, 5] for i = 1..n. The global minimum for the
function is: f(–2.903534, ..., –2.903534) = –39.16599n. Simulation results using the SOA for
the Styblinski–Tang function are shown in Figure 9.

Limitations (Advantages and Disadvantages) The proposed chapter’s SOA has a
probabilistic algorithm at its heart. The SOA is an efficient optimisation tool for solving
a variety of non–linear problems. However, a crucial factor to the success or failure of the
algorithm is the fitness function. For instance, given an appropriate fitness function, the SOA
described in this chapter would be able to find a desired solution within only small number of
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Figure 9: Styblinski–Tang Function - SOA simulations for different situations: (a) single
dimensional problem and (b) multiple dimensional simulations [5, 10, 50 and 100]. (Popu-
lation size = 100). Note – since the fitness function is a multiple of the dimensions (i.e.,
–39.16599n) – we divide the fitness value by n to enable us to plot the different simulation
results side–by–side.

iterations. Yet, a major problem lies in the definition and the combination of multiple–fitness
functions. Since tuning the algorithm parameters in addition to selecting suitable weighting
coefficients might not be intuitive. We highlight the facts in respect to finding a solution
based upon an evolving algorithm (i.e., genetic algorithm optimisation as proposed in this
chapter):

Advantages:

• handle multiple local optima
• handle non–smooth highly non–linear objective functions
• able to work with a large numbers of parameters
• handle noisy (or stochastic) objective functions
• algorithm is straightforward to understand and implement
• modular in that the optimisation can be separated from the problem
• always get an answer (a best guest solution when non–exists) and will improve over time
• the underlying algorithm is inherently parallelizable (distributed across multiple

cores/systems) – exploit processing power of parallel architectures (scalable solution)
• the SOA uses probabilistic selection rules (not deterministic ones)
• less likely to be trapped in a local optimal (compared to traditional gradient based methods)
• importantly, is able to work with problems that have no analytical solution
• simple to represent real–numbers (e.g., compared to other techniques, like the Genetic

Algorithm, which requires variables to be encoded/converted to a chromosome representa-
tion)

Disadvantages:

• no guarantee of finding a global maxima
• time taken to converge (unpredictable)
• parameter tuning (unintuitive on what the parameters should be, such as, for

hunger/explore values)

6 Discussion/Future Work

While the algorithm has demonstrated the ability to efficiently find an optimal solution
for a variety of situations – the algorithm still has room for improvement based upon the
original bio–inspired concept. Different environments/habitats, influence the population and

11



individuals characteristics (urban, desert, forest or a farmers field). For instance, the urban
habitats are areas dominated by human activities and human constructions. These include
towns, cities and associated landscapes, such as landfill sites. It can almost be described
as a patchwork of other habitats where buildings are artificial cliffs, sewers and drains are
waterways, and parks, gardens and brownfield sites provide forests and meadows. Animals
which have adapted to the urban environment are tolerant of the light and noise generated
by human activity, and take advantage of the heat and the abundant food sources.

• Species of slug
• Fitness functions
• Multi–objective situations
• Shock propagation (enhance technique)
• Population catastrophe (regularly inject diversity)
• Hybrid possibilities

The SOA possesses an underlying chaotic behaviour, which under the right conditions, gives
the algorithm and enhanced search efficiency. The ability to search local regions in addition
to tunnel (or jump) through local traps helps make the algorithm more versatile and improve
the probability of finding the global optimal

7 Conclusion

This chapter has introduced an innovative Gastropod Mollusc (or Slug) Optimisation Algo-
rithm (SOA) for solving non–linear multi–modal problems. The global search capacity of the
SOA is boosted by its nature inspired behavioural pattern and underlying chaotic random-
ness. Experimental results revealed the exploration capacity of SOA for solving challenging
problems (including multi–model/multi–variable tasks). In summary, the SOA is an efficient
and powerful tool for addressing highly non–linear discontinuous problems.
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