
Voxel Free-Form Deformations
Ben Kenwright

Abstract—A straightforward and efficient deformation algorithm
is an important tool for creating more engaging and interactive
virtual environments. This paper explores computational factors
and algorithms necessary for creating a visually pleasing soft-body
deformation effect. We compare the different techniques available,
while examining and evaluating the visual and computational
trade-offs each method offers. With this in mind, we demonstrate
a level of detail subdivision method based upon a grid-spatial
partitioning optimisation (voxels and tetrahedrons). We investigate
computational speed-ups using the graphical processing units
interoperability feature. Having said that, the object voxels, control
points, and the associated deformations provide a scalable solution
that is suitable for real-time systems. All things considered, we
conclude with a discussion on the significance of our work in
virtual environments and possible future areas of investigation.

Keywords–deformation, convex hulls, 3d, convex, video games, real-
time computer generated, interactive

I INTRODUCTION

Motivation Geometry in today’s virtual worlds, such as, video
games and training simulations, tend to be static. It is common
to see animated characters composed of mesh hierarchies mov-
ing relative to each other, but it is rare to see the individual
mesh elements animated (i.e., vertices). Animating hierarchies
of interconnected meshes is the traditional approach [1] for
portraying an object’s movement, but does little to portray the
organic non-rigid situation or characteristics of a mesh. In fields
other than computer graphics, animators traditionally exagger-
ate parts of a mesh (for instance, a character’s movement) to
convey expressions. In interactive environment it is difficult for
animation solutions to capture these expressive motions, such
as, exaggeration. This is usually because an object generally
remains the same shape throughout the simulation.

Soft-Body Mechanics The process of deforming vertices
within a mesh lies within the domain of soft-body mechanics.
Soft-body mechanics in combination with traditional animation
techniques greatly enhances the realism of an object or scene.
Until recently, this process was simply too expensive to consider
in real-time environments. However, with the advancement of
computational power, such as, the graphical processing unit
(GPU) and massively parallel processing, soft-object animations
are becoming a viable real-time solution [5], [16].

High Poly Graphical Meshes The trend for realism and the
advancement of computational power, means graphical models,
have become more detailed and complex, hundreds of thousands
of vertices. The deformation of an object occurs by moving
the vertices of the graphical mesh. Typically, due to the high
poly count - groups of vertices are attached to control points
that artists can move using either pre-recorded animations or
parametric curves to attain the desired effect. A crucial factor
is that the mesh object has sufficient number of vertices/face.
As if the polygon resolution is low, the deformations give rise
to a degradation in silhouette edge aliasing.

Contribution The key contributions of this paper are: (1) we
evaluate and explore optimisations of the traditional FFD sys-
tem for real-time environments; (2) we implement a voxel-based
system for targeting active control regions; (3) we explore the
interoperability of the GPU for sharing data through common
framebuffers for computational speed-ups - whereby we control
and rendering the deformation using the massively parallel GPU
architecture.

II RELATED WORK

Multi-Discipline The creation and control of deformable
meshes is an important component in multiple research areas,
such as, engineering material analysis and safety testing. How-
ever, we focus on an interactive solutions, such as, video games,
since it allows the player to visually experience a more life-like
and realistic environment. We review a number of important pa-
pers and concepts for solving deformation problems in different
contexts (e.g., character animation and material analysis) in this
section. Figure 2, presents a visual time-line of key publications
in the area, starting with the initial free-form deformation work
by Sederberg and Parry [22].

Initially The free-form Deformation technique is com-
monly known as FFD. The technique has been around for
some time, but was first documented in a SIGGRAPH paper by
Sederburg and Parry in 1986 [22]. This FFD technique is used in
numerous commercial modelling and animation packages, and
forms the groundwork of our work. The technique is intuitive
and straightforward to implement and forms the basis of a
number of other techniques (e.g., hierarchy ffd) [6]. A number
of important deformation techniques have been published 2 over
the years, however, a real-time solution that is flexible and
scalable would be useful. Similarly, in commercial circles (e.g.,
video games and training simulations), we see deformation
systems but the methods and techniques are propriety owned
and not shared publically. Crucially, the soft-body animation
should not consume all the system resources. For real-time
applications, only a small amount of the overall computational
resource is allocated to the animation, since the application
needs to run a number of components, like graphics, artificial
intelligence, networking, and game-play features.

Texture Displacement A uncomplicated and efficient method
for convex deformations (i.e., surface normal displacement) that
is able to produce reasonable results is the use of texture-
vertex mapping [19], [9]. The concept is most noted for its
application in simulating water ripple effects [7]. The approach
writes height information to a texture that is used to deform
the graphical mesh vertices (e.g., analogous to physical bump-
mapping). Information written to the texture are applied to
the object mesh using the graphical processing unit (GPU) to
achieve a real-time frame-rates. This approach can also be used
to write non-deformable feedback (e.g., scratches and marks to
the graphical textures).

Figure 1. Bear Model Local Voxel Regions - Illustrating the influence of linear local 2x2x2 control voxel array. (30240 graphical vertices, 216 control points
(5x5x5) - with 85 voxels active or 168 control points). Figure shows a magnetic sphere moving around the object pulling control points in its direction to show
squishing and deformation of the underlying graphical mesh.

Finite Element Model This section discusses the representa-
tion of the deformation model (i.e., finite element decomposi-
tion approximation). The model must be able to handle large
deformations and be stable under large time-steps while not
hindering the systems performance. Deformation is a geometric
measure of strain (e.g., stretching and shearing). Typically,
strain models use accurate finite element methods that as-
sume small deformations. These simple linear strain models
may cause inflation/expansion issues when the strain cannot
separate rotation information [17]. Of course, methods have
been developed to attempt to remove the rigid rotation [4],
[25]. This solution is popular in interactive applications but the
deformation needs to be very small. We use a coarser non-
linear finite-element model that is coupled to the high-detailed
geometry mesh. This allows us to synthesize physically plausi-
ble deformation in real-time, while maintaining a reasonably
correct physical model. Our coarser model extracts the key
details from the high-detailed graphical mesh, such as, structural
inter-connectivity and mass distribution.

Object collision deformations are likely to be large, especially
for high speed impacts (e.g., objects hitting a wall or skin
deforming when touched). We must take care with these large
deformations, as large aesthetically pleasing deformation are
difficult to create in some respects (i.e., materials should not
look rubbery or jelly-like). In order to handle large deforma-
tions, we use a low-dimensional approximation. We express
large deformations regardless of object’s rigid body centre.

The mesh node positions formulate a finite element decompo-
sition. The strain for each element is computed from the nodal
positions in the currently deformed state and the initially non-
deformed state. For every element, we determine the influence
of each neighbour. As nodes are disturbed from their rest
location by external perturbations they influence their neigh-
bouring elements in accordance with their spatial proximity and
connectivity strength.

Low-Resolution Control Mesh We explain our low-
dimensional control model for deformations. A control mesh

technique is used reduce the computational overhead and the
mathematical complexity of the model so we can achieve real-
time frame-rates. We explain the high-resolution object surface
interactions to handle detailed contacts between the object and
the environment in an endeavour to realistically mimic the
mechanical deformation properties.

Model Reduction & Mesh Embedding The two main tech-
niques for reducing the complexity of a finite element system
can be classified into two main types: modal reduction and mesh
embedding. Modal reduction is a popular method for reducing
the complexity of a finite element system by using a linear
subspace to span a small number of displacement basis vectors
to represent the deformation in the body. The eigenmodes
obtained from linear modal analysis would be the best basis
vectors for small deformation. For large deformation, however,
they are not sufficient to capture the non-linear deformation
characteristics, so multiple techniques have been suggested to
choose a good deformation basis set [2]. Model techniques have
successfully been used for real-time solutions, such as, surgery
simulators and hand-soft body interaction.

Mesh embedding, which is also called free-form deformation
[14], uses a low-dimensional coarse volumetric mesh to enclose
the entire deformable body in order to represent the behavior
of the body. The location of every material point inside the
deformable body is determined by interpolating the positions of
the neighboring nodes in the mesh. Since the work by Faloutsos
et al. [6], mesh embedding techniques have been widely used
to simulate soft bodies in the graphics literature [18], [13],
[3] We chose mesh embedding to reduce complexity of the
deformable body in our simulation system not only because
the technique can reduce the model complexity without losing
the fine geometry of the object but also because the frame can
be manipulated more easily and efficiently using the embedding
mesh system compared to modal reduction. In our formulation,
the control body elements are considered as an interconnected
set of rigid elements that can be solved using iterative penalty-
based constraints. The complete system consists of a set of
deformable body elements and a rigid body core.

Figure 2. Timeline - Graphical timeline showing some of the important soft-body milestones in the area of computer graphics and animation over the past
few decades. [A] [22], [B] [16], [C] [23], [D] [25], [E] [8], [F] [20], [G] [15], [H] [6], [I] [26], [J] [21], [K] [5], [L] [24]

III METHOD

Free-Form Deformation (FFD) Algorithm The FFD algo-
rithm comprises three components: (1) transformation of the
floating image using the splines and an interpolation function;
(2) evaluation of an objective function; (3) and optimisation
against this function. Individually, these components may be
formulated in a data parallel manner as they mainly consist
of ‘voxel-wise’ computations. However, difficulties associated
with computational and memory constraints mean certain as-
pects are not easily implemented in practice [16].

Cubic B-Splines Interpolation The FFD algorithm consists
of locally deforming an image volume using cubic B-Splines.
This technique has the desirable feature of guaranteeing a
continuous deformation. The cubic B-Splines framework is
well documented elsewhere, and the details are omitted for
brevity. However, a particularly favourable property of the
technique is that any deformation produced with a grid of
density n can be exactly produced on a grid of density 2n1.
This property has been used in a pyramidal approach in other
work implementation [16].

However, cubic B-Spline methods are extremely computa-
tionally expensive. For this reason in the classical approach
only one control point is optimised at a time, which means the
whole image does not have to be fully interpolated at each step.
The computation of each voxel’s position and their new intensi-
ties are fully independent and thus their computation is suitable
for parallel implementation. Since parallel computation is more
efficient when processing large amounts of data concurrently,

the optimise all control points and interpolate the whole image
at each step.

The technique of Free Form Deformation (FFD) was developed
by Parry and Sederberg [22]. The FFD technique embeds an
object in a space that is than deformed. The most commonly
used analogy for a FFD is to consider an object embedded
in a parallel piped of clear, flexible plastic. If the lattice
structure is deformed, the object inside the lattice will also be
deformed.

The lattice structure is composed of Bezier hyperpatches. A
hyperpatch is specified by a three-dimensional grid of control
points pijk and defines a volume of space parametrized by the
three parameters u,v, and n where 0 < u, v, n < 1. An FFD
block a rectangular volume where each face is a hyperpatch. Let
the the three sides be represented by the vectors (S, TandU).

At its heart, FFD is the metamorphosis of an object from its
originally modeled appearance - known as the object’s rest
state - to its deformed state. This is accomplished by deforming
the object’s coordinate system in the following three steps:

• The object to be deformed is embedded in a regular coordi-
nate system defined by three mutually perpendicular axes -
the standard (X, Y, Z) axes we are all used to dealing with

• The coordinate system is deformed, allowing its previously
straight axes to become curves. Areas of the coordinate
system can collapse inwards or expand outwards

• The positions of the object’s vertices in the old (regular)
coordinate system are updated to match where they ended

Figure 3. Trolly Local Voxel Regions - Illustrating the influence of linear local 2x2x2 control voxel array. (487656 graphical vertices, 1331 control points
(10x10x10) - only 188 voxels active or 566 control points).

up after the coordinate system was deformed

Graphical Processing Unit (GPU) The implementation was
achieved using CUDA which is an Application Programming
Interface developed by NVidia to simplify the interface between
CPU (host) and GPU (device) (Figure 4).

Figure 4. GPU & CUDA Interop - Exploiting the massively parallel
architecture of the graphical processing unit.

A. Global Deformation Control

Every point influences every other point. The control points are
calculated:

Pijk = X0 +
i

l
S +

j

m
T +

k

m
U (1)

The lattice space is given by: X(s, t, u) = X0+sS+ tT +uU .
X0 is the origin of the local coordinate system and S, T , and
U lie along the edges of the FFD block. Note that for any point
interior to the lattice 0 < s < 1, 0 < t < 1, and 0 < u < 1.

s =
T × U(X −X0)

T × U · S
,

t =
S × U(X −X0)

S × U · T
,

u =
S × T (X −X0)

S × T · U
,

(2)

Xffd =

l∑
i=0

(
l
i

)
(1− s)l−isi

[m∑
j=0

(
m
j

)
(1− t)m−jtj

[n∑
k=0

(
n
k

)
(1− u)n−kut Pijk

]]
(3)

Figure 5. Local Deformations - (a) 2x2x2 sub-region and (b) 4x4x4 sub-
region.

Global Solution Features

• overall coupled influence - this can be desirable or undesir-
able in difference circumstances. For example, we may or
may not want the effects of a deformation on opposite side
of the shape to influence each other

• the model is computationally expensive - since every vertex
needs to take into account the influence of ‘every’ control
point. As the number of control points increases the compu-
tational cost becomes increasingly expensive

• the method is suitable for exploitation on massively parallel
architectures, such as, the GPU [16]

• the deformed mesh may not stay within the control mesh
lattice

Figure 6. Global and Local Deformations - (a) global influence and (b)
sub-region.

B. Local Deformation Control

One disadvantage of using a single FFD block to control anima-
tion of an object is that you are applying global deformations.
A deformation will alter the values of every vertex in the object

to a greater or lesser extent. This gives the visual impression
that the whole object is one jelly-like mass.

This is undesirable in many situations. For instance, we might
be deforming a car as a result of a crash. If the car were to be
hit at its front-right corner, we would want that corner of the
car to crumple, but the rest of the car should remain unaffected.

We can apply changes more accurately to a particular part of
the object by increasing the degree, and hence the number
of control points, of the FFD. However, the changes applied
are still global, and will still affect every point in the object,
although to an increasingly small degree. The computational
cost of the deformation is also greatly increased remember
that with an FFD block of degree n the inner loop is iterated
n3 times per vertex.

The solution is to use more than one FFD block per object.
In fact, there are no restrictions on the use of FFDs they
can even overlap within an object. We might define the car
as being encased in four FFDs, one for each quarter of the car
(as seen from above). Now during impact, if the first FFD block
is modified, only the affected part of the car will change.

When joining FFDs the same continuity constraints apply as
when joining Bezier curves or patches that is, at a minimum,
points which meet should be in the same position in space,
and preferably should have some level of derivative continuity.
This ensures that the object doesnt develop any jagged edges
or discontinuities during the deformation.

Cubic FFD Another way to reduce the number of calculations
is to reduce the degree of the FFD block. While a cubic FFD
requires 64 iterations of the function’s main loop per vertex to
calculate the deformed positions. There is also the possibility of
a quadratic FFD block, represented by a 3x3x3 array of control
points for even fewer iterations.

The basic structures of the cubic Bezier volume is given
in Figure 5(b). We set all the control points up to form a
4x4x4 regular coordinate grid. After defining Bezier curves and
surfaces, the extension to volumes simply involves increasing
the number of control points and adding another parameter to
the Bezier equation. The array of control points will contains
64 vectors in a 4x4x4 array, and the curve is defined in terms
of three parameters given below in Equation 4:

3∑
i=0

3∑
j=0

3∑
k=0

Bi,3(u)Bj,3(v)Bk,3(w)Pijk (4)

where Equation 4, is known as the Tricubic Bezier Hyperpatch,
with B() known as the Berstein polynomial blending function,
defined as: Bν,n(x) =

(
n
ν

)
xν (1− x)

n−ν
, ν = 0, . . . , n. and(

n
ν

)
known as the binomial coefficient. We also provide an

expanded implementation of Equation 4 in Support Material
Listing.

Linear FFD Linear FFDs, defined by a 2x2x2 grid of points
can be used to quickly apply shear or taper to objects, see Figure
5(a).

Local Solution Features

• only neighbouring control points influence the deformation.
We can modify the distance of influence (e.g., 2x2x2 or
4x4x4 regions)

• the model is much less expensive compared to the global
solution - especially for large numbers of control points

• the method is suitable for exploitation on massively parallel
architectures, such as, the GPU [16]

C. Global or Local Deformation

There are many situations where a technique for deforming
meshes could be applied in interactive environments:

1) In cartoon-like animation, it can be used to add personality
to a mesh’s animation sequence. For instance, a charac-
ter that is jumping will squat down first, and an angry
character might pulse with rage. This is an example of a
global deformation the whole object is controlled by one
deformation.

2) During a crash in a car racing game, the area where
the impact occurred could be deformed, and remain so
afterwards. This gives a convincing look of damage and
saves the need for having multiple models of each car. This
is an example of local deformation we do not want the
whole car to deform just because the front bumper is bent.

3) A hierarchy of deformations can animate characters with
more convincing muscle tone than hierarchies of objects
are capable of portraying. This is an example of hierar-
chical deformation, and the deformations would overlap.
For instance, at the joints of a bone how the flesh looked
would be dependent on the position of both bones.

D. Voxels & Optimisation

A pixel (picture element) defines a point in two dimensional
space with its x and y coordinates; while a voxel is a unit
of information defining a point in three-dimensional space
(i.e., the combination of the words volumetric and pixel to
represent a volume element). In three-dimensional space, each
of the coordinates is defined in terms of its position, color,
and density. For example, a cube may represent any region of
space expressed by a x, y and z coordinate and its size. This
information enables us to discretize a three-dimensional world
into elements.

A graphical mesh is encapsulated by a bounding box. The
bounding box is subdivides into voxels. Each voxel is made up
of eight corners which represent the control points Each mesh
vertex within with the FFD is influenced by one or more control
points and hence voxels. For ‘local’ FFD implementations, we
optimise the solution by culling voxels (and control points) that
have no influence over the mesh deformation (e.g., see Figure
7).

E. Tetrahedron

We are able to apply the FFD principle to tetrahedrons [10].
Defining the four corners of the tetrahedron (ABCD) and
the point within (X) as shown in Figure 8. The interpolation
function for tetrahedron cell is a linear one of the type in
Equation 1. The four coefficients are calculated the same way
as the axis aligned box. The natural coordinates are again taken

Figure 7. Drinks Can Local Voxel Regions - Illustrating the influence of
linear local 2x2x2 control voxel array. (4720 graphical vertices, 1936 control
points (10x15x20) - only 190 voxels active or 490 control points).

to vary from 0 to 1 in the non-dimensional cell. With reference
to Figure 8, Equation 5 calculates the weight coordinates. Our
vector formulation also correlates with the work of Kenwright
and Lane [12] who solved a system of equations by inverting
a 3x3 matrix.

Figure 8. Tetrahedron - Barycentric coordinates to calculate the deformation
weights.

Figure 9. Simple Object Tetrahedron Decomposition - Forming a convex
hull with the centroid as a reference point a control mesh formed of tetrahedrons
is easily formed compared to using cuboid voxels (e.g., see Figure 11).

s =
T × U(X −X0)

T × U · S
,

t =
S × U(X −X0)

S × U · T
,

u =
S × T (X −X0)

S × T · U
,

X = X0 + sS + tT + uU

(5)

where s, t, and u are the scalar weights for the point within the
tetrahedron. The scalar weights are calculated initially at the
start (i.e., before any deformation takes place). As the control

points (corner vertices of the tetrahedron) move, the morphed
vertex X is recalculated.

Figure 10. Vehicle Local Voxel Regions - Illustrating the influence of linear
local 2x2x2 control voxel array. (327141 graphical vertices, 1331 control points
(10x10x10) - only 517 voxels active or 953 control points). Circled a control
point that does not influence any mesh points when moved.

Figure 11. Cat Model Local Voxel Regions - Illustrating the influence of
linear local 2x2x2 control voxel array. (11862 graphical vertices, 1331 control
points (10x10x10) - only 280 voxels active or 579 control points).

IV EXPERIMENTAL RESULTS

The simulations with all the test models were implemented on
a desktop machine with 3.2 GHz Intel i7 CPU and NVIDIA
GeForce GTX 480 GPU. The number of control points allowed
greater fine detailed influence over the deformation. Addition-
ally, reducing the regional influence (i.e., from global to local)
affects the computational cost and visual appearance.

Scalability We endeavour to automate the deformation pro-
cess rather than depending on artist intervention for modelling
the underlying low-poly control mesh. This enables us to adapt
the detail of the transformation for different target audiences
(i.e., reduce the model complexity to more coarser representa-
tions for environments with limited resources, such as, memory
and processing power).

V CONCLUSION

A straightforward and efficient soft-body algorithm is an impor-
tant tool for creating more engaging, interactive, and life-like
scenes. The method we have presented allows the solution to
be customized to the systems needs (e.g., scalable, efficient,
and automatic through artistic customisation). The flexibility of
the approach within this paper allows developers and artists to
design more attractive solutions that capture the imagination
without sacrificing resources. Overall, we focused on a low-
dimensional voxel-based model. The method can be used off-
line to create pre-canned animations for animated files or in
real-time, while supporting a diverse set of characteristics.

The soft-body solution in this paper for deforming object
vertices is practical. We provide a set of supporting code
samples to support the paper. FFDs are particularly useful when
combined with objects represented by Bezier patches, however,
the solution is flexible enough to be combined with physics-
based control systems, such as, constraint solvers and penalty-
based springs to create a dynamic solution [11].

ACKNOWLEDGEMENTS

A special thanks to reviewers for taking time to review this
article and provide insightful comments and suggestions to help
to improve the quality of this article.

References

[1] Ilya Baran and Jovan Popović. Automatic rigging and animation of
3d characters. In ACM Transactions on Graphics (TOG), volume 26,
page 72. ACM, 2007. 1

[2] Jernej Barbič and Doug L James. Real-time subspace integration for st.
venant-kirchhoff deformable models. In ACM Transactions on Graphics
(TOG), volume 24, pages 982–990. ACM, 2005. 2

[3] Steve Capell, Matthew Burkhart, Brian Curless, Tom Duchamp, and
Zoran Popović. Physically based rigging for deformable characters. In
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 301–310. ACM, 2005. 2

[4] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran
Popović. A multiresolution framework for dynamic deformations. In
Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 41–47. ACM, 2002. 2

[5] Yuanmin Cui and Jieqing Feng. Gpu-based smooth free-form deforma-
tion with sharp feature awareness. Computer Aided Geometric Design,
35:69–81, 2015. 1, 3

[6] Petros Faloutsos, Michiel Van De Panne, and Demetri Terzopoulos.
Dynamic free-form deformations for animation synthesis. Visualization
and Computer Graphics, IEEE Transactions on, 3(3):201–214, 1997. 1,
2, 3

[7] Alain Fournier and William T Reeves. A simple model of ocean waves.
In ACM Siggraph Computer Graphics, volume 20, pages 75–84. ACM,
1986. 1

[8] William M Hsu, John F Hughes, and Henry Kaufman. Direct manipula-
tion of free-form deformations. In ACM Siggraph Computer Graphics,
volume 26, pages 177–184. ACM, 1992. 3

[9] Matthew Johnson-Roberson, Oscar Pizarro, Stefan B Williams, and Ian
Mahon. Generation and visualization of large-scale three-dimensional
reconstructions from underwater robotic surveys. Journal of Field
Robotics, 27(1):21–51, 2010. 1

[10] Ben Kenwright. Free-form tetrahedron deformation. In International
Symposium on Visual Computing, pages 787–796. Springer, 2015. 6

[11] Ben Kenwright and Graham Morgan. Practical introduction to rigid body
linear complementary problem (lcp) constraint solvers. Algorithmic and
Architectural Gaming Design, pages 159–205, 2012. 7

[12] David N Kenwright and David A Lane. Optimization of time-dependent
particle tracing using tetrahedral decomposition. In Proceedings of the
6th conference on Visualization’95, page 321. IEEE Computer Society,
1995. 6

[13] Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun.
Numerical coarsening of inhomogeneous elastic materials. In ACM
Transactions on Graphics (TOG), volume 28, page 51. ACM, 2009. 2

[14] Junggon Kim and Nancy S Pollard. Fast simulation of skeleton-driven
deformable body characters. ACM Transactions on Graphics (TOG),
30(5):121, 2011. 2

[15] Henry J Lamousin and Warren N Waggenspack Jr. Nurbs-based free-form
deformations. Computer Graphics and Applications, IEEE, 14(6):59–65,
1994. 3

[16] Marc Modat, Gerard R Ridgway, Zeike A Taylor, Manja Lehmann,
Josephine Barnes, David J Hawkes, Nick C Fox, and Sébastien Ourselin.
Fast free-form deformation using graphics processing units. Computer
methods and programs in biomedicine, 98(3):278–284, 2010. 1, 3, 5, 6

[17] Matthias Müller and Markus Gross. Interactive virtual materials. In
Proceedings of Graphics Interface 2004, pages 239–246. Canadian

Figure 12. Global & Local Simulation - Deformation example (a) initial model mesh and control points, (b) global and (c) local deformation influences.
Graphical mesh with 3810 vertices and 60 control points (i.e., 3x4x5 distribution along x, y, and z axis).

Figure 13. Global Simulation Timing - Timing information for varied numbers of control points and graphical vertices. (a) Number of Vertices vs Time
(Fixed Number of Control Points), and (b) Number of Control Points vs Time (Fixed Number of Vertices).

Human-Computer Communications Society, 2004. 2
[18] Matthieu Nesme, Paul G Kry, Lenka Jeřábková, and François Faure.

Preserving topology and elasticity for embedded deformable models. In
ACM Transactions on Graphics (TOG), volume 28, page 52. ACM, 2009.
2

[19] Masaaki Oka, Kyoya Tsutsui, Akio Ohba, Yoshitaka Kurauchi, and
Takashi Tago. Real-time manipulation of texture-mapped surfaces. In
ACM SIGGRAPH Computer Graphics, volume 21, pages 181–188. ACM,
1987. 1

[20] Alec R Rivers and Doug L James. Fastlsm: fast lattice shape matching
for robust real-time deformation. ACM Transactions on Graphics (TOG),
26(3):82, 2007. 3

[21] Julia A Schnabel, Daniel Rueckert, Marcel Quist, Jane M Blackall,
Andy D Castellano-Smith, Thomas Hartkens, Graeme P Penney, Wal-
ter A Hall, Haiying Liu, Charles L Truwit, et al. A generic framework
for non-rigid registration based on non-uniform multi-level free-form
deformations. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2001, pages 573–581. Springer, 2001. 3

[22] Thomas W Sederberg and Scott R Parry. Free-form deformation of solid
geometric models. In ACM SIGGRAPH computer graphics, volume 20,
pages 151–160. ACM, 1986. 1, 3

[23] Robert W Sumner, Johannes Schmid, and Mark Pauly. Embedded
deformation for shape manipulation. ACM Transactions on Graphics
(TOG), 26(3):80, 2007. 3

[24] Anthony Talvas, Maud Marchal, Christian Duriez, Miguel Otaduy, et al.
Aggregate constraints for virtual manipulation with soft fingers. Visual-
ization and Computer Graphics, IEEE Transactions on, 21(4):452–461,
2015. 3

[25] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elas-

tically deformable models. In ACM Siggraph Computer Graphics,
volume 21, pages 205–214. ACM, 1987. 2, 3

[26] Andrew Witkin and William Welch. Fast animation and control of
nonrigid structures. In Proceedings of the 17th annual conference on
Computer graphics and interactive techniques, pages 243–252. ACM,
1990. 3

Appendix
Listing 1. Blended position given the 8 control points for the vertex within
the cube and the pre-calculated weights.

1 // Local deformation 2x2x2 Region
Vector3 WeightLinearCube2x2x2(
const vector<Vector3>& controlpoints,
float s, float t, float u)
{

6 // 8 corners of a cube
DBG_ASSERT(controlpoints.size()==8);

DBG_ASSERT (s >= 0.0f && s <= 1.0f);
DBG_ASSERT (t >= 0.0f && t <= 1.0f);

11 DBG_ASSERT (u >= 0.0f && u <= 1.0f);

float BU[2], BV[2], BW[2];

BU[0] = (1-s); BU[1] = s;
16 BV[0] = (1-t); BV[1] = t;

BW[0] = (1-u); BW[1] = u;

Vector3 ret(0,0,0);
int n = 0;

21 for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)

Figure 14. Linear Simulation Timing - Timing information for varied
numbers of control points and graphical vertices (2x2x2 sub control region).
Number of Vertices vs Time (Fixed Number of Control Points). Due to the
linear relationship between control points and groups of graphical vertices we
are able to create large numbers of control points and have large numbers of
mesh vertices (compare with the global timing in Figure 13). Note - the bumps
in the graph are due to cache hits and other system resources.

for (int k = 0; k < 2; k++)
{
ret += controlpoints[n] * (BU[i] * BV[j] * BW[k]);

26 n++;
}
return ret;
}// End WeightLinearCube2x2x2(..)

Listing 2. Blended position given the 64 control points for the vertex within
the cube-lattice and the pre-calculated weights.

1 // Local deformation 4x4x4
Vector3 WeightCubeVolume4x4x4(
const vector<Vector3>& controlpoints,
float s, float t, float u)
{

6 // 4x4x4 points that make up the cube region
DBG_ASSERT(controlpoints.size()==64);

DBG_ASSERT (s >= 0.0f && s <= 1.0f);
DBG_ASSERT (t >= 0.0f && t <= 1.0f);

11 DBG_ASSERT (u >= 0.0f && u <= 1.0f);

float BU[4], BV[4], BW[4];

// X Bezier Basis Functions
16 BU[0] = (1.0f - s) * (1.0f - s) * (1.0f - s);

BU[1] = 3.0f * s * (1 - s) * (1.0f - s);
BU[2] = 3.0f * s * s * (1.0f - s);
BU[3] = s * s * s;

21 // Y Bezier Basis Functions
BV[0] = (1.0f - t) * (1.0f - t) * (1.0f - t);
BV[1] = 3.0f * t * (1 - t) * (1.0f - t);
BV[2] = 3.0f * t * t * (1.0f - t);
BV[3] = t * t * t;

26
// Z Bezier Basis Functions
BW[0] = (1.0f - u) * (1.0f - u) * (1.0f - u);
BW[1] = 3.0f * u * (1 - u) * (1.0f - u);
BW[2] = 3.0f * u * u * (1.0f - u);

31 BW[3] = u * u * u;

Vector3 ret(0,0,0);
int n = 0;
for (int i = 0; i < 4; i++)

36 for (int j = 0; j < 4; j++)
for (int k = 0; k < 4; k++)
{
ret += controlpoints[n] * (BU[i] * BV[j] * BW[k]);
n++;

41 }

return ret;

}// End WeightCubeVolume4x4x4(..)

Listing 3. Tetrahedron calculate the three weights, given the tetrahedron
corners and the vertex (within) the tetrahedron volume.

1 void
CalculateTetrahedronWeight(const vector<Vector3>&

tetrahedronCorners,
const Vector3& point,
float& s, float& t, float& u)
{

6 DBG_ASSERT(tetrahedronCorners.size()==4);

const Vector3& A = tetrahedronCorners[0];
const Vector3& B = tetrahedronCorners[1];
const Vector3& C = tetrahedronCorners[2];

11 const Vector3& D = tetrahedronCorners[3];

const Vector3& X = point;

Vector3 S = B-A;
16 Vector3 T = C-A;

Vector3 U = D-A;

s = Dot(Cross(T, U), X-A) / Dot(Cross(T, U), S);

21 t = Dot(Cross(S, U), X-A) / Dot(Cross(S, U), T);

u = Dot(Cross(S, T), X-A) / Dot(Cross(S, T), U);

DBG_ASSERT(s>=0 && s<=1.0f);
26 DBG_ASSERT(t>=0 && t<=1.0f);

DBG_ASSERT(u>=0 && u<=1.0f);
}// CalculateTetrahedronWeight(..)

Figure 15. Local Simulation 4x4x4 - Timing information for a 4x4x4 local
grid. Graphical mesh 8058 vertices and the control mesh 12x18x12 points
(3211) - optimised to 2084 active voxels for 4x4x4 local FFD. (a) Original
mesh and (b) mesh deformed and control points.

	Introduction
	Related Work
	Method
	Global Deformation Control
	Local Deformation Control
	Global or Local Deformation
	Voxels & Optimisation
	Tetrahedron

	Experimental Results
	Conclusion
	References
	Appendix

