
DRAFT

ve
rsi

on

0.6
81

.

DRAFT

ve
rsi

on

0.6
81

.

DRAFT

ve
rsi

on

0.6
81

VULKAN
GRAPHICS API
IN 20 MINUTES

(Coffee Break Series)

Kenwright

DRAFT

ve
rsi

on

0.6
81

Copyright c© 2016 Kenwright
All rights reserved.

No part of this book may be used or reproduced in any manner
whatsoever without written permission of the author except in
the case of brief quotations embodied in critical articles and
reviews.

BOOK TITLE:
VULKAN GRAPHICS API IN 20 MINUTES
ISBN-13: 978-1535124850
ISBN-10: 1535124857

The author accepts no responsibility for the accuracy, com-
pleteness or quality of the information provided, nor for en-
suring that it is up to date. Liability claims against the author
relating to material or non-material damages arising from the
information provided being used or not being used or from
the use of inaccurate and incomplete information are excluded
if there was no intentional or gross negligence on the part of
the author. The author expressly retains the right to change,
add to or delete parts of the book or the whole book without
prior notice or to withdraw the information temporarily or
permanently.

Edition: 021042016

DRAFT

ve
rsi

on

0.6
81

Table of Contents

1 Introduction 13

1.1 What is Vulkan? 13

1.2 What is different about Vulkan? 14

1.2.1 With great power comes great 16

1.3 Should you bother learning Vulkan? 16

1.4 Do any games support Vulkan yet? 17

1.5 What this book is NOT 17

DRAFT

ve
rsi

on

0.6
81

1.6 Summary 19

1.7 Test Yourself 19

1.7.1 Question 1 . 19

1.7.2 Question 2 . 20

1.7.3 Question 3 . 20

1.7.4 Question 4 . 20

2 Getting Started 21

2.1 Setup 21

2.2 Installing Drivers 21

2.3 LunarG Vulkan SDK 22

2.4 Practical Roadmap 23

2.5 Summary 24

3 Initializing Vulkan 25

3.1 Your First Vulkan Program 25

3.1.1 Debugging . 28

DRAFT

ve
rsi

on

0.6
81

3.2 Windows (Win32) 29

3.2.1 WinMain . 33

3.2.2 Window Creation 33

3.2.3 Message Processing 35

3.3 Summary 37

3.4 Review 38

3.5 Test Yourself 38

3.5.1 Question 1 . 38

3.5.2 Question 2 . 38

3.5.3 Question 3 . 39

3.5.4 Question 4 . 39

4 Surfaces . 40

4.1 Surfaces
(Screen & Format) 40

4.2 Summary 43

4.3 Test Yourself 43

4.3.1 Question 1 . 43

4.3.2 Question 2 . 44

DRAFT

ve
rsi

on

0.6
81

4.3.3 Question 3 . 44

5 Devices Enumeration 45

5.1 Flexibility of Vulkan 45

5.2 Summary 49

5.3 Test Yourself 49

5.3.1 Question 1 . 50

5.3.2 Question 2 . 50

5.3.3 Question 3 . 50

6 Device Creation 51

6.1 Devices 51

6.2 Summary 55

6.3 Test Yourself 55

6.3.1 Question 1 . 55

6.3.2 Question 2 . 55

DRAFT

ve
rsi

on

0.6
81

7 Swap-Chains 57

7.1 Buffering & Synchronization 57

7.1.1 Swap-chain . 58

7.2 Creating Images 60

7.3 Image Views 61

7.4 Summary 63

7.5 Test Yourself 63

7.5.1 Question 1 . 63

7.5.2 Question 2 . 63

7.5.3 Question 3 . 64

8 Device Queues 65

8.1 Commands 65

8.2 Summary 70

8.3 Test Yourself 70

8.3.1 Question 1 . 70

8.3.2 Question 2 . 70

DRAFT

ve
rsi

on

0.6
81

9 Framebuffer 72

9.1 Framebuffer 72

9.2 Summary 75

9.3 Test Yourself 75

9.3.1 Question 1 . 75

9.3.2 Question 2 . 75

10 Displaying (Presenting) 77

10.1 Presenting 77

10.2 Summary 81

10.3 Test Yourself 82

10.3.1 Question 1 . 82

10.3.2 Question 2 . 82

11 Triangle Data 83

11.1 Vertices & Buffers 83

11.2 Summary 88

DRAFT

ve
rsi

on

0.6
81

11.3 Test Yourself 89

11.3.1 Question 1 . 89

11.3.2 Question 2 . 89

12 Shaders . 90

12.1 Vertex & Pixel Shaders 90

12.1.1 Vertex Shader . 91

12.1.2 Pixel (or Fragment) Shader 92

12.1.3 Compiling Shader Binaries 93

12.1.4 Loading Shader Binaries 93

12.1.5 Shader Data/Parameters 96

12.2 Summary 100

12.3 Test Yourself 100

12.3.1 Question 1 . 100

12.3.2 Question 2 . 100

13 Descriptors & Binding 102

13.0.3 Descriptors & Binding 102

13.1 Summary 106

DRAFT

ve
rsi

on

0.6
81

12

13.2 Test Yourself 106

13.2.1 Question 1 . 106

13.2.2 Question 2 . 106

14 Pipeline . 108

14.1 Connecting Everything 108

14.1.1 RenderLoop (Revisited) 114

14.2 Putting it all Together (Simple Triangle) 121

14.2.1 Summary (What Next?) 121

14.3 Test Yourself 122

14.3.1 Question 1 . 122

14.3.2 Question 2 . 123

DRAFT

ve
rsi

on

0.6
81

1. Introduction

This book introducing the reader (you) to the Vulkan cross
platform 3D graphics API (a taste of Vulkan) - including
simple tutorials and samples. We address questions, such
as, do we need another graphics API? what is special about
Vulkan? how is Vulkan different from previous DirectX and
OpenGL libraries? and how do we initialize and setup a basic
Vulkan program in C++?

1.1 What is Vulkan?

To begin with, let’s talk about what Vulkan is and what it has
to do with computer graphics. As you’ll see (or know), you
typically use a set of graphical API to control your graphical

DRAFT

ve
rsi

on

0.6
81

14 Chapter 1. Introduction

output - the days of writing your own driver for every comput-
er/platform has gone. With today’s huge range of constantly
changing devices (and hardware) means it would be crazy to
even try! Hence, a common, scalable, modern graphics API
lets us get things done quickly with less errors. Vulkan is one
of these API. Not just any API - but a low-overhead, cross-
platform 3D graphics and compute API. As you’ll discover,
the Vulkan API enables us to unlock a lot of performance
even with current-generation hardware. So learning Vulkan
will give you more control and power - enabling you to take
existing, current, and future hardware to new heights due to
its fresh forward thinking design.Vulkan opens the door to
improved multi-core ‘CPU’ usage, increased ‘on-screen’ de-
tail, higher framerates (for both applications and video games
- ultimately producing smoother gameplay), more efficient
communications between the hardware (e.g., CPU and GPU),
and reduced system power usage. These features allow you
to create new applications (video games and tools) that were
previously beyond your reach - unleashing a new era of possi-
bilities (making the impossible - possible).

1.2 What is different about Vulkan?

Unlike previous graphical predecessors (e.g,. OpenGL and
DirectX), Vulkan is designed from the ground up to run on
diverse platforms, ranging from mobiles and tablets, to gam-
ing consoles and high-end desktops. The underlying design
of the API is layered (to be more structured and modular),
so it enables the creation of a common, yet extensible archi-
tecture for code validation, debugging, and profiling, without
impacting performance. Krhonos (the original developer of
Vulkan) claims the layered approach delivers a lot more flexi-
bility, catalysing stronger innovations in cross-vendor GPU
tools, and provides more direct GPU control (which sophis-
ticated game engines demand). As Vulkan has less latency
and overhead than older OpenGL or DirectX (or Direct3D)

DRAFT

ve
rsi

on

0.6
81

1.2 What is different about Vulkan? 15

API - to enable you and your system to reach better levels of
performance. In a nutshell, Vulkan helps us (and developers)
avoid bottlenecks (through more explicit control) to unleash
each systems full potential.

Figure 1.1: More Explicit Control - How Vulkan compares
to traditional graphical API (more power to the developer).

In years gone by, OpenGL and DirectX drivers have been
highly optimized for specific architectures (GPU). You’d find
it difficult to get more out of these current drivers. However,
with DirectX 12 and Vulkan the approach to how software
and hardware are done has changed (requires the re-thinking
of how to take advantage of the explicit APIs). Develop a new
balance between the high and low level capabilities to exploit
changes in technology trends (both CPU and GPU parallelism
- effective and efficient synchronization of resources). Not
so easy - can’t just switch over - lots of thought is needed
to exploit the new APIs way of working (e.g., multi-queue
support requires additional work). Designed for the future
and the next generation of hardware.

DRAFT

ve
rsi

on

0.6
81

16 Chapter 1. Introduction

1.2.1 With great power comes great ...

The Vulkan API opens up new doors of possibility - provid-
ing greater control and customizability. However, this extra
flexibility comes at a cost. The problems originally hidden
away in the driver, are now the issues of the application devel-
oper (you), such as, synchronization (barriers) and memory
management (uploads and residency). Of course, it is a dou-
ble sided sword, you get the power (and responsibility) to
fix these issues and solve other unforeseen complications or
bottlenecks.

Modern CPUs are changing (i.e., more cores and more paral-
lelism). The Vulkan API/drivers for CPU/GPU communica-
tion and management was designed around this core concept.
Ultimately reducing bottlenecks and allowing more flexibility
(low-level control) - direct access to hardware to recover lost
performance. Vulkan has effectively removed the veil which
was common in previous generation graphics API (masking
and hiding the internal mechanics and implicitly making as-
sumptions).

1.3 Should you bother learning Vulkan?

Like OpenGL, Vulkan targets high-performance real-time 3D
graphics applications such as games and interactive media
across all platforms, and offers higher performance and lower
CPU usage, much like Direct3D 12 and Mantle. In addition
to its lower CPU usage, Vulkan is also able to better distribute
work amongst multiple CPU cores. Vulkan targets applica-
tions such as games and interactive media across multiple
platforms to provide higher performance and lower CPU us-
age. The core advantages of the Vulkan graphics API, is it
(should) be possible to have one set of game code that will
run on any hardware that’s compliant with the API (one API
to rule them all).

DRAFT

ve
rsi

on

0.6
81

1.4 Do any games support Vulkan yet? 17

1.4 Do any games support Vulkan yet?

While Vulkan is relatively new, you’ll be happy to hear that
it has been successfully employed in a number of real-world
applications. Some examples of Vulkan used commercially
for video games are:

• The Talos Principle – The first video game with Vulkan
rendering support (Feb 2016)
• Dota 2 – Vulkan support released (May 2016)

Interesting, those new to software development and graphics
the Vulkan API can be a bit intimidating compared to other
graphics API, since it can typically takes over ‘500’ lines
of C++ code just to display a simple ‘Triangle’ (as you’ll
discover).

1.5 What this book is NOT

This book does not introduce graphical concepts, such as, ma-
trices, lighting equations, shader languages, or programming
languages (C/C++/Win32). However, there are an abundance
of books available on these subjects - we encourage the reader
(you) to look up concepts and material (i.e., to complement
and develop the principles and samples given in this short
introductory text).

Vulkan is developed to be cross-platform. However, in some
specific chapters you’ll use the Win32 API. Yet it should be
easy for the you (the reader) to port these few lines of code
across to other platforms. Remember, the Vulkan API will
be changing constantly (trust me) - over the next few years,
so you can expect to see an assortment of customizations and
modifications. So keep up to date.

You need to have a basic grounding in existing APIs (e.g., the

DRAFT

ve
rsi

on

0.6
81

18 Chapter 1. Introduction

workings of the graphics pipeline and traditional OpenGL/Di-
rectX) - concepts such as, multi-threading, staging resources,
synchronisation and so on. You’ll discuss how these are now
implemented in Vulkan. You’ll take a brief whirlwind tour of
why, what and how the main Vulkan concepts look like and
how to get something up and running quickly.

This book isn’t intended to be comprehensive text (for that you
should read the specification), nor is it heavy in background
or justification. However, hopefully by the end of this book,
you should be able to read the specifications or library headers
and have an idea of how to get a ‘simple’ Vulkan application
up and running.

While you consider basic error handling, you’ll skip over
lots of query calls in our basic examples - which would be
necessary to determine each systems capabilities and limits.
A real world application would need to respect and implement
these query calls. In light of the fact that you’ll excluded a
large number of details, this was necessary to keep the text
as reasonably compact and simple as possible. In summary,
after reading this book, you should have a good beginners
start using to understanding and using Vulkan.

As you work through the different sections, remember the
some key points:

1. Think in parallel (with both the CPU and the GPU)
2. Avoid allocating and releasing at runtime
3. Group (group command buffer submissions, barriers,

and batch rendering)
4. Manage the memory efficiently (Don’t over engineer

the problem)
5. Still apply traditional optimisation logic (no one solu-

tion fits every problem)

DRAFT

ve
rsi

on

0.6
81

1.6 Summary 19

1.6 Summary

Vulkan is an open source alternative to Microsoft DirectX on
the PC and is the successor to OpenGL. The Vulkan API is
derived from AMD’s Mantle’s API. Eventually, you’ll see
it supported on everything from phones to PCs. Similar to
Microsoft’s DirectX 12, it claims to make graphical applica-
tions such as games run faster! Yet Vulkan won’t be limited
to Windows 10 (like DirectX 12), instead, it will be supported
right back to Windows 7 (not to mention Linux and Android
support). A critical factor for Vulkan developers – is Vulkan
aim to give fast low-level API access that was previously un-
available. Importantly, because it’s open source, it won’t cost
you anything to use and develop for. What is more, it will run
on any of AMD’s graphics cards right back to Radeon HD
7000 series and Nvidia GeForce 600 series boards and newer.
To get started - all you need is to update your graphics card
driver.

1.7 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

1.7.1 Question 1

Vulkan API is a low-overhead, cross-platform 3D graphics
and compute API:

a false
b true

DRAFT

ve
rsi

on

0.6
81

20 Chapter 1. Introduction

1.7.2 Question 2

Vulkan is an abbreviation for ‘Validated GPU Levels Khronos
Applications’?

a true
b false

1.7.3 Question 3

The Vulkan Window’s driver only support the ‘Windows 10’
operating system?

a true
b false

1.7.4 Question 4

Which of the following are correct:

a Vulkan, like other low-overhead APIs, improves perfor-
mance by providing more direct access to the GPU

b Vulkan is a next generation API for high-efficiency
graphics and computing

c Vulkan is an open API
d all over the above

(Q1: Answer b; Q2: Answer b; Q3: Answer b; Q4: Answer
d;)

DRAFT

ve
rsi

on

0.6
81

2. Getting Started

2.1 Setup

Before you even think about developing any Vulkan C++
programs - you’ll need to install the necessary drivers and
SDK libraries/header files.

1. Install the Vulkan SDK
2. Install a working Vulkan graphics driver

2.2 Installing Drivers

The Vulkan driver is essential if you want to run your Vulkan
applications i.e., you must setup your graphical display driver.
However, don’t worry, the process is extremely simple:

DRAFT

ve
rsi

on

0.6
81

22 Chapter 2. Getting Started

Download the NVidia Vulkan Driver:

Get and install the NVidia Vulkan drivers
(http://developer.nvidia.com/vulkan-driver)

Download AMD Vulkan Driver:

Get and install the AMD Vulkan drivers
(http://www.amd.com/en-gb/innovations/software-
technologies/technologies-gaming/vulkan)

After installing the Vulkan driver, you should have a ’vulkan-
1’ file on your computer (e.g., ’vulkan-1.dll’ in your Sys-
tem32 folder on Windows). Similarly, for Linux or Android
operating systems, you should be able to find and install the
necessary driver and locate the binaries - which you’ll link
with your application and Vulkan SDK.

2.3 LunarG Vulkan SDK

The LunarG Vulkan SDK provides the development and run-
time components for building, running, and debugging Vulkan
applications (which will help you to get up and running
quickly and easily). The SDK is comprehensive, such that, it
includes the Vulkan loader, Vulkan layers, debugging tools,
SPIR-V tools, the Vulkan run time installer, documentation,
samples, and demos.

Download the LunarG Vulkan SDK:

Get and install Vulkan SDK (Windows/Linux)
(https://lunarg.com/vulkan-sdk/)

DRAFT

ve
rsi

on

0.6
81

2.4 Practical Roadmap 23

Interestingly, when you download and install the Vulkan SDK,
you’ll find it provides a wealth of documentation, such as:

• Getting started with the Vulkan SDK
• Vulkan tools framework (Loaders, Layers, Validation

Layer Details)
• Tools
• Advanced topics
• Vulkan docs (Specifications, Samples)
• FAQ
• SDK Installers

This documentation provides additional facts on the API func-
tions and procedures. So if you are unsure about anything -
you can consult the SDK documentation or online articles for
further information.

2.4 Practical Roadmap

After you’ve set everything up, e.g., drivers and sdk - and
you’re able to compile and run Vulkan programs - you’re
ready to start your journey. The chapters follow a sequential
order and build upon one another (i.e., each chapter adds
further features/operations). The eventual aim is to have
a simple application up and running that outputs geometry
(i.e., a color triangle moving around the screen). Hence, the
following chapters include:

• Initializing Vulkan
• Surfaces (you get surface information for the device -

so you’re able to make a decisions on which device is
most compatible)
• Device Enumeration
• Device Creation
• Swapping Chains
• Device Queues (Command Buffers)

DRAFT

ve
rsi

on

0.6
81

24 Chapter 2. Getting Started

• Framebuffer
• Presenting (Clearing Screen)
• Triangle Data (Buffers)
• Shaders (Loading/Linking)
• Descriptors (Defining/Binding Shader, Data and API)
• Pipeline (Triangle Output)

2.5 Summary

There is a massive range of resources online to support the
Vulkan API. While you get you up and running with the basic
Vulkan API features - you’ll also find solutions to a whole
variety of problems online as well. However, remember, the
API is in its infancy, so don’t expect it to remain constant
over the coming years - as technology trends change - the
API will be revamped and rewritten (e.g., version 1.1, 1.5, 2.0,
and 3.0). The Vulkan API will and does change often. So,
some portions of this book may become obsolete quickly. If
you do find so, please leave me a message (e.g., email me) so
that later revisions may be updated to reflect these updates.
Hence, each revision includes modifications and corrections
(not to mention your name in the credits if you are the first to
point out something). All the best and enjoy the Vulkan API
journey.

DRAFT

ve
rsi

on

0.6
81

3. Initializing Vulkan

3.1 Your First Vulkan Program

There is no global state in Vulkan; all application state is
stored in a vkInstance object. Creating a vkInstance object
initializes the Vulkan library and allows application to pass
information about itself to the implementation.

To create an instance you’ll also need a vkInstanceCreate-
Info object controlling the creation of the instance and a
vkAllocationCallback to control host memory allocation for
the instance. For now you’ll ignore vkAllocationCallback
and use NULL which will use the system-wide allocator.
More on vkAllocationCallback later.

/**
*
* **1** Filling out application description:

DRAFT

ve
rsi

on

0.6
81

26 Chapter 3. Initializing Vulkan

*
**/
vkApplicationInfo applicationInfo;
// sType is mandatory
applicationInfo.sType = ←↩

VK_STRUCTURE_TYPE_APPLICATION_INFO;
// pNext is mandatory
applicationInfo.pNext = NULL;
// The name of our application
applicationInfo.pApplicationName = "Hello Vulkan";
// The name of the engine (e.g: Game engine name)
applicationInfo.pEngineName = NULL;
// The version of the engine
applicationInfo.engineVersion = 1;
// The version of Vulkan we're using for this
// application
applicationInfo.apiVersion = VK_API_VERSION_1_0;

/**
*
* **2** Filling out instance description:
*
**/
vkInstanceCreateInfo instanceInfo;
// sType is mandatory
instanceInfo.sType = ←↩

VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
// pNext is mandatorly set
instanceInfo.pNext = NULL;
// flags is mandatory set
instanceInfo.flags = 0;
// The application info structure is then passed
// through the instance
instanceInfo.pApplicationInfo = &←↩

applicationInfo;
// Don't enable and layer
instanceInfo.enabledLayerCount = 0;
instanceInfo.ppEnabledLayerNames = NULL;
// Don't enable any extensions
instanceInfo.enabledExtensionCount = 0;
instanceInfo.ppEnabledExtensionNames = NULL;

/**
*
* **3** Now create the desired instance
*
**/
vkInstance instance = VK_NULL_HANDLE;

vkResult result =
vkCreateInstance(&instanceInfo, NULL, &instance);

DBG_ASSERT_VULKAN_MSG(result,
"Failed to create vulkan instance");

DRAFT

ve
rsi

on

0.6
81

3.1 Your First Vulkan Program 27

// To Come Later
// ...
// ...

/**
*
* **4** Never forget to free resources
*
**/
vkDestroyInstance(instance, NULL);

sType is used to describe the type of the structure. It must be
filled out in every structure. pNext must be filled out too. The
idea behind pNext is to store pointers to extension-specific
structures. Valid usage currently is to assign it a value of
NULL. The same goes for flags.

In the first chunk of code you setup an application description
structure which will be a required component for our instance
info structure. In Vulkan you’re expected to describe what
your application is, which engine it uses (or NULL). This
is useful information for Vulkan to have as driver vendors
may want to apply engine or game specific features/fixes to
the application code. Traditionally this sort of technique was
supported in much more complicated and unsafe manners.
Vulkan addresses the problem by requiring upfront informa-
tion.

The second part creates an instance description structure
which will be used to actually initialize an instance. This
is where you’d request extensions or layers. Extensions work
in the same way as GL did extensions, nothing has changed
here and it should be familiar. A layer is a new concept Vulkan
has introduced. Layers are techniques you can enable that
insert themselves into the call chain for Vulkan commands the
layer is inserted in. They can be used to validate application
behavior during development. Think of them as decorators to
commands. In your simple example, you don’t bother with
extensions or layers, but they must be filled out.

DRAFT

ve
rsi

on

0.6
81

28 Chapter 3. Initializing Vulkan

From here it’s as trivial as calling vkCreateInstance to
create an instance. On success this function will return
VK_SUCCESS. When you’re done with your instance you
destroy it with vkDestroyInstance (tidying up).

3.1.1 Debugging

You’ll end up writing a large amount of code - and errors
happen - either typos or initialization states fail. Avoid having
the program simply exit without any notifications. Leaving
you wondering ’what happened’ - or searching through log
files for an error print - it might be more useful to define a
custom assert macro. When debugging you are able to have
your program stop on the line or bring up a message box.

// Saving debug information - e.g., log file,
// debugger, messagebox, etc.

// For variable argument functions ,e.g., dprintf(..)
#include <stdlib.h>
#include <stdarg.h>
#include <stdio.h> // vsprintf_s

inline
void dprintf(const char *fmt, ...)
{
va_list parms;
static char buf[2048];

// Try to print in the allocated space.
va_start(parms, fmt);
// format data into a string buffer
vsprintf_s(buf, fmt, parms);
va_end(parms);

// Write the information out to a txt file
#if 0
// open file for writing
FILE *fp = fopen("log.txt", "a+");
// write to file
fprintf(fp, "%s", buf);
// close file
fclose(fp);
#endif

// Output to the visual studio window

DRAFT

ve
rsi

on

0.6
81

3.2 Windows (Win32) 29

OutputDebugStringA(buf);
}// End dprintf(..)

// Debug Break (win32) causes Visual Studio to halt
// on the problem line so we can analyse the issue
// in real-time

#if defined(_WIN32)
#define DBG_ASSERT(f) { if(!(f)) \

{ __debugbreak(); }; }
#else
#define DBG_ASSERT(f) { if(!(f)) \

{ assert(0); }; }
#endif

#define DBG_VALID(f) { if((f)!=(f)) \
{DBG_ASSERT(false);} }

#define DBG_ASSERT_MSG(val, errmsg) \
dprintf(errmsg); \
DBG_ASSERT(val)

#define DBG_ASSERT_VULKAN(val) \
DBG_ASSERT(VK_SUCCESS == val)

#define DBG_ASSERT_VULKAN_MSG(val, errmsg) \
dprintf(errmsg); \
DBG_ASSERT(VK_SUCCESS == val)

Furthermore, for different builds, you can have the errors
handled in different ways (e.g., log file in release, message
box popup, or debug assert). The assert also helps provide
insight for developers on what is happening (e.g., what is
expected and what isn’t expected).

#include <stdio.h>

dprintf ("Debug Assert - line %d of file %s (function←↩
%s)\n",

__LINE__, __FILE__, __func__);

3.2 Windows (Win32)

As you progress through the examples, you’ll move towards
outputting to the screen. For the graphical output examples

DRAFT

ve
rsi

on

0.6
81

30 Chapter 3. Initializing Vulkan

that depend on platform specific information, you’ll use the
Win32 API (i.e., WinMain and Windows Callback Message
Loop). A skeleton Win32 listing is shown below. You have
three main ‘Vulkan’ functions - for the creation and deletion
of Vulkan resources when the application starts and closes -
and the render loop - which constantly gets called (over and
over again) to update the screen as fast as possible.

// Vulkan will run within a Win32 application
#include <windows.h>

// Store the window handle - as we use
// it later on for setting up Vulkan Surfaces
HWND g_windowHandle = NULL;

void VulkanCreate()
{
// Vulkan setup/initialization

}// End VulkanCreate(..)

void VulkanRelease()
{
// Tidy up and release any Vulkan resources
// before closing down

}// End VulkanRelease(..)

void VulkanRender()
{
// Render loop - refreshes the graphical output

}// End VulkanRender(..)

// Win32 message callback
LRESULT CALLBACK WindowProc(HWND hwnd,

UINT uMsg,
WPARAM wParam,
LPARAM lParam)

{
// choose what to do with the message
switch(uMsg)
{

// called when we close the application
case WM_CLOSE:
{

// posts a WM_QUIT message
PostQuitMessage(0);

}
break;

// windows lets us know we need to redraw
case WM_PAINT:

DRAFT

ve
rsi

on

0.6
81

3.2 Windows (Win32) 31

{
// Override so drawing is managed
// by us
VulkanRender();

}
break;

// all other messages
default:
{
}
break;

}// End switch(..)

// a pass-through for now. We will return to this
// callback
return DefWindowProc(hwnd, uMsg, wParam, lParam);

}// End WindowProc(..)

// Win32 Program Entry Point
int WINAPI WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
// defines our window properties
WNDCLASSEX windowClass = {};
// size of structure in bytes
windowClass.cbSize = sizeof(WNDCLASSEX);
// window styles
windowClass.style = CS_OWNDC | CS_VREDRAW |←↩

CS_HREDRAW;
// call back function for message handling
windowClass.lpfnWndProc = WindowProc;
// file handle
windowClass.hInstance = hInstance;
// class name
windowClass.lpszClassName = "VulkanWindowClass";
// register our new class with windows
RegisterClassEx(&windowClass);

g_windowHandle =
CreateWindowEx(
// no additional window styles
NULL,
// name of our class from above
"VulkanWindowClass",
// application name
"Hello Vulkan",
// window appearance styles
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
// x,y top left corner

DRAFT

ve
rsi

on

0.6
81

32 Chapter 3. Initializing Vulkan

100, 100,
// width and height of window
width, height,
// no parents
NULL,
// no popup menus
NULL,
// executable file handle
hInstance,
// no parameters to pass
NULL);

// check we where successful
DBG_ASSERT(g_windowHandle!=NULL);

// initialize and setup Vulkan
VulkanCreate();

MSG msg;
while(true)
{
// Continually force the window to be
// redrawn as long as no other Win32
// messages are pending
PeekMessage(&msg, NULL, NULL, NULL, PM_REMOVE);

// exit the while loop if quit
if(msg.message == WM_QUIT)
break;

// translates any virtual-key messages
TranslateMessage(&msg);
// executes the appropriate function
DispatchMessage(&msg);

// We constantly tell windows to refresh the
// screen - i.e., to send a WM_PAINT message
RedrawWindow(g_windowHandle, NULL, NULL, ←↩
RDW_INTERNALPAINT);

}

// release any Vulkan resources we allocated
VulkanRelease();

// return the last message we got from PeekMessage
// before quitting
return msg.wParam;;

}// End WinMain(..)

DRAFT

ve
rsi

on

0.6
81

3.2 Windows (Win32) 33

3.2.1 WinMain

The program entry point is called ‘WinMain’ - we also need to
include the windows header file ‘Windows.h’ (for the various
macros and handle defines, such as, HINSTANCE, HWND,
and WINAPI).

// program entry point in Win32
int WINAPI WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

The Win32 API function calling convention is __stdcall
which is defined by the CALLBACK and WINAPI macros.

• hInstance - handle to current instance
• hPrevInstance - handle to previous instance
• lpCmdLine - cmd line arguments
• nCmdShow - how should the window appear when

created

3.2.2 Window Creation

WNDCLASSEX - struct that holds window class information.
We set the window style to include ‘WS_VISIBLE’, so the
window is shown as soon as it’s created (so we don’t need to
call ‘ShowWindow(..) function).

For the window class style (WNDCLASSEX), we need to
include the style CS_OWNDC. This is important when we
have multiple windows, since without the CS_OWNDC flag
the windows would not interact with one another correctly
when dynamically moved about (e.g., dragged around the
screen).

WNDCLASSEX wc;
// same as memset(&wc, 0, sizeof(WNDCLASSEX)
ZeroMemory(&wc, sizeof(WNDCLASSEX));

DRAFT

ve
rsi

on

0.6
81

34 Chapter 3. Initializing Vulkan

// size
wc.cbSize = sizeof(WNDCLASSEX);
// window style: redraw after horizont
wc.style = CS_OWNDC | CS_VREDRAW | CS_HREDRAW;
// what function shall we use to handle draws
wc.lpfnWndProc = WindowProc;
// application instance
wc.hInstance = hInstance;
// cursor type
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
// prefered window color
wc.hbrBackground = (HBRUSH)COLOR_WINDOW;
// name of the window class
wc.lpszClassName = L"MyWindowClass";
// register the window class
RegisterClassEx(&wc);

We have defined our window - now we call the CreateWin-
dowEx to actually have Windows create our window and
return the all important HWND window handle that we use
later on in our Vulkan API (i.e., to get surface/size informa-
tion).

HWND CreateWindowEx(
// specifies the extended style of the window
DWORD dwExStyle,
// specifies the window class name
LPCTSTR lpClassName,
// window title (displayed in the title bar)
LPCTSTR lpWindowName,
// style of the window being created
DWORD dwStyle,
// initial horizontal position of the window
int x,
// initial vertical position of the window
int y,
// width, in device units, of the window
int nWidth,
// height, in device units, of the window
int nHeight,
// handle to the parent or owner window
HWND hWndParent,
// overlapped or pop-up window
HMENU hMenu,
// handle to application instance
HINSTANCE hInstance,
// usually NULL
LPVOID lpParam)

DRAFT

ve
rsi

on

0.6
81

3.2 Windows (Win32) 35

CreateWindowEx will return our window handle if we’re
successful or NULL if a failure occurred - we need to store
the handle - as we’ll pass it to Vulkan when we’re setting up
the graphical device (e.g., render surface).

3.2.3 Message Processing

LRESULT CALLBACK WindowProc(
// window handle - very important
HWND hWnd,
// message identifier
UINT message,
// message information
WPARAM wParam,
// more information about the message
LPARAM lParam
);

What happens when a Windows event occurs? We have to:

• use an appropriate function that gets message from the
queue
• call TranslateMessage() translates any virtual-key

messages
• call DispatchMessage() executes the appropriate Win-

dowProc function

Processing Windows messages - we want to avoid ‘blocking
call’. Hence, be aware that the standard ‘GetMessage’ Win32
API function is a ‘blocking’ function.

BOOL GetMessage(
// pointer to message struct
LPMSG lpMsg,
// window handle
HWND hWnd,
// lowest msg id value
UINT wMsgFilterMin,
// highest msg id value
UINT wMsgFilterMax
);

// blocking methods are bad - and should be

DRAFT

ve
rsi

on

0.6
81

36 Chapter 3. Initializing Vulkan

// avoided so we use the `PeekMessage' function
// instead of `GetMessage'.
BOOL PeekMessage(

// pointer to message structure
LPMSG lpMsg,
// window handle

HWND hWnd,
// params
UINT wMsgFilterMin,
UINT wMsgFilterMax,
// PM_REMOVE/PM_NOREMOV

UINT wRemoveMsg);

Passing (0,0) in (wMsgFilterMin, wMsgFilterMax) means
we don’t care what we get.

The main message loop:

MSG msg = {0};
while(TRUE)
{
// non-blocking `peek' function
if(PeekMessage(&msg, NULL, 0, 0))
{
if(msg.message == WM_QUIT)
break;

// translates any virtual-key messages
TranslateMessage(&msg);
// pass along to the system for processing
DispatchMessage(&msg);
}

// rendering and other operations
// (physics, AI etc.)

// We constantly tell windows to refresh the
// screen - i.e., to send a WM_PAINT message
RedrawWindow(g_windowHandle, NULL, NULL, ←↩

RDW_INTERNALPAINT);

}// End While(TRUE)

DRAFT

ve
rsi

on

0.6
81

3.3 Summary 37

Figure 3.1: Win32 Paint Message - Overriding the
WM_PAINT message in the callback function - means we’re
responsible for drawing the window. If you run the mini-
mal Win32 code sample - you’ll see the window draw area
doesn’t refresh. This is because, we’ll pass the window handle
(HWND) to Vulkan later on - who will manage the drawing.

3.3 Summary

You should have a simple Vulkan application up and running.
Of course, it doesn’t do much. Simply initializes and de-
initialized Vulkan - but it gets you on the first step of the
Vulkan ladder. In a few chapters, you’ll have everything setup
to run a simple graphical application (hello triangles).

DRAFT

ve
rsi

on

0.6
81

38 Chapter 3. Initializing Vulkan

3.4 Review

Remember, the Vulkan API programming methods typically
start with the prefix vk (e.g., vkCreateInstance(..)). Both
lowercase vk for methods and uppercase first letter for vari-
able structures Vk. When checking the method return value
for success - remember to use VK_SUCCESS - otherwise,
the return value is a number to help diagnose the failure.

3.5 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

3.5.1 Question 1

To initialize a Vulkan instance, which API method do we use:

a vkCreateInstance
b CreateInstance
c vkInstance
d VulkanCreateInstance
e vkNewInstance

3.5.2 Question 2

When completing the vkApplicationInfo structure, is the
sType element mandatory?

a true
b false

DRAFT

ve
rsi

on

0.6
81

3.5 Test Yourself 39

3.5.3 Question 3

For the vkInstanceCreateInfo structure, what would you
initialize the sType element to?

a VK_STRUCTURE_TYPE_APPLICATION_INFO
b VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO
c VK_STRUCTURE_TYPE_TEST
d VK_UNDEFINED
e -1

3.5.4 Question 4

The Vulkan API return value for identifying if a failure hap-
pened is:

a NULL
b VK_DBG_SUCCESS
c 0x10000000
d VK_OK
e VK_SUCCESS

(Q1: Answer a; Q2: Answer a; Q3: Answer b; Q4: Answer
e;)

DRAFT

ve
rsi

on

0.6
81

4. Surfaces

4.1 Surfaces
(Screen & Format)

You have created Vulkan (initialized it) - but you need to
gather some information about our system. For example, the
device, screen size and color format. Since you’re going to
use surfaces and Window for the graphical output, you’ll need
to modify your Vulkan initialization implementation. You
need to tell Vulkan you’ll be using a surfaces and the type of
surfaces (i.e., Win32 screen). This information is embedded
within an ‘extensions’ list (i.e., list of strings). What is more,
you’re now going to output something to the screen. So you
need a ‘layer’. Hence, you tell Vulkan when you initialize
your instance that you need some layers, also the layers name.
You’ve cut through a lot of red-tape here - but you’d want
to iterate over the systems capabilities initially and extract

DRAFT

ve
rsi

on

0.6
81

4.1 Surfaces
(Screen & Format) 41

the layer and extension names using the available ‘Get’ API
within Vulkan (e.g., vkEnumerateInstanceExtensionProp-
erties).

Below shows the setup code:

// Store Vulkan instance handle
VkInstance g_instance = NULL;

// Initialize VULKAN
const char *layers[] = { "VK_LAYER_NV_optimus" };
const char *extensions[] = { "VK_KHR_surface",

"VK_KHR_win32_surface" ←↩
};

{
// information about the application you
// want to pass to the Vulkan driver
VkApplicationInfo ai = { };
// manditory
ai.sType = ←↩

VK_STRUCTURE_TYPE_APPLICATION_INFO;
// application name
ai.pApplicationName = "Hello Vulkan";
// a version number
ai.engineVersion = 1;
// SDK version
ai.apiVersion = VK_API_VERSION_1_0;

// Vulkan instance creation data
VkInstanceCreateInfo ici = { };
// manditory type
ici.sType = ←↩

K_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
// reserved for future use
ici.flags = 0;
// pointer to an extension-specific structure
ici.pNext = NULL;
// application info from above
ici.pApplicationInfo = &ai;
// number of layers we want to use
ici.enabledLayerCount = 1;
// specify the layer names
ici.ppEnabledLayerNames = layers;
// number of extensions
ici.enabledExtensionCount = 2;
// the extension names
ici.ppEnabledExtensionNames= extensions;

// create Vulkan instance

DRAFT

ve
rsi

on

0.6
81

42 Chapter 4. Surfaces

VkResult result =
vkCreateInstance(&ici, NULL, &g_instance);

// where we successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create vulkan instance.");

// check we have a valid handle
DBG_ASSERT(g_instance!=NULL);
}

If our Vulkan instance initialized without any problems,
you’re ready to create a surface (note - you need the Win32
windows handle for the surface compatibility search - the op-
erating system tell you about the screen/window which helps
you choose the correct graphics device). You’ve hardcoded
the layer name (VK_LAYER_NV_optimus) in the above sam-
ple - however, depending upon your driver and graphics card,
you may have to search the available layer names.

// Handle to our surface
VkSurfaceKHR g_surface = NULL;

// We need to define what type of surface we'll be
// rendering to - this will depend on our computer
// and operating system
{
// setup parameters for our new windows
// surface we'll render into:
VkWin32SurfaceCreateInfoKHR sci = {};
// surface type (win32)
sci.sType =
VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;

// calling GetModuleHandle with NULL returns the
// file handle used to create the calling process
sci.hinstance = GetModuleHandle(NULL);
// We should use our `created' window handle (HWND)
sci.hwnd = g_windowHandle;

// create surface
VkResult result =
vkCreateWin32SurfaceKHR(
// instance
g_instance,
// pCreateInfo
&sci,
// pAllocator
NULL,

DRAFT

ve
rsi

on

0.6
81

4.2 Summary 43

// pSurface
&g_surface);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,

"Could not create surface.");
DBG_ASSERT(g_surface!=NULL);
}

4.2 Summary

The surface provides essential information that you’ll use
throughout our Vulkan application. In the next Chapter, you’ll
search for which ‘physical’ devices are available on our ma-
chine (e.g., our PC may have multiple graphics cards). You’ll
need to check if what the capabilities are and if the physical
device support your screen/window surface properties.

4.3 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

4.3.1 Question 1

To initialize and create Vulkan (‘Win32’) surface, which API
method do we use:

a vkCreateSurface
b CreateSurface
c vkSurfaceWin32
d VulkanCreateSurfaceWin32

DRAFT

ve
rsi

on

0.6
81

44 Chapter 4. Surfaces

e vkCreateWin32SurfaceKHR

4.3.2 Question 2

When completing the VkWin32SurfaceCreateInfoKHR
structure, is the sType element mandatory?

a true
b false

4.3.3 Question 3

For the VkWin32SurfaceCreateInfoKHR structure, what
would you initialize the sType element to?

a NULL
b VK_STRUCTURE_TYPE_WIN32

_SURFACE_CREATE_INFO_KHR
c VK_STRUCTURE_TYPE_TEST
d VK_UNDEFINED
e -1

(Q1: Answer e; Q2: Answer b; Q3: Answer b;)

DRAFT

ve
rsi

on

0.6
81

5. Devices Enumeration

5.1 Flexibility of Vulkan

Once you’ve initialised Vulkan and you have a valid VkIn-
stance, you’re ready to get a device. In Vulkan there are two
types of devices: physical and logical. A physical device, or
VkPhysicalDevice, is a handle to an actual piece of hardware
(hence the “physical”). A logical device, or VkDevice, is
an abstraction of the underlying hardware and is what the
application sees and interacts with.

Now that you have an instance, you need to a way to associate
the instance with the hardware. In Vulkan there is no notion
of a singular GPU, instead you enumerate physical devices
and choose. This allows you to use multiple physical devices
at the same time for rendering or compute.

DRAFT

ve
rsi

on

0.6
81

46 Chapter 5. Devices Enumeration

In order to get a logical VkDevice, you must first get a physi-
cal device. To do this you first poll Vulkan to get a count of
compatible devices on the system. This can be achieved by
calling the function:

vkEnumeratePhysicalDevices()

The vkEnumeratePhysicalDevices function allows you to
both query the count of physical devices present on the system
and fill out an array of vkPhysicalDevice structures represent-
ing the physical devices.

// keep a copy of the handle to
// the physical device we use
VkPhysicalDevice g_device = VK_NULL_HANDLE;

{
// temporary variable for determining how
// many devices are present in the system
uint32_t deviceCount = 0;

// query how many devices are present
VkResult result =
vkEnumeratePhysicalDevices(
// instance
g_instance,
// pPhysicalDeviceCount
&deviceCount,
// pPhysicalDevices
NULL);

// check if our call was successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to query the number of physical devices ←↩

present");

// There has to be at least one device present
DBG_ASSERT_MSG(0 != deviceCount,
"Couldn't detect any device present with Vulkan ←↩

support");

// array to store our list of physical devices
vector<VkPhysicalDevice> physicalDevices(deviceCount)←↩

;
// get the physical devices
result =
vkEnumeratePhysicalDevices(
// instance
g_instance,

DRAFT

ve
rsi

on

0.6
81

5.1 Flexibility of Vulkan 47

// pPhysicalDeviceCount
&deviceCount,
// pPhysicalDevices
&physicalDevices[0]);

// check if we were successful
DBG_ASSERT_VULKAN_MSG(result,
"Faied to enumerate physical devices present");

// check we have at least one physical device
DBG_ASSERT(physicalDevices.size()>0);

// Use the first available device
g_physicalDevice = physicalDevices[0];
}

Once you’ve got a physical device; you can fetch the prop-
erties of that physical device using vkGetPhysicalDevice-
Properties which will fill out a vkPhysicalDeviceProperties
structure:

// Enumerate all physical devices and print out the ←↩
details

for (uint32_t i = 0; i < deviceCount; ++i)
{
// struct that holds the device details
VkPhysicalDeviceProperties deviceProperties;
memset(&deviceProperties, 0, sizeof ←↩

deviceProperties);

// fill structure with info about the device
vkGetPhysicalDeviceProperties(physicalDevices[i], &←↩

deviceProperties);

dprintf("Driver Version: %d\n",
deviceProperties.driverVersion);

dprintf("Device Name: %s\n",
deviceProperties.deviceName);

dprintf("Device Type: %d\n",
deviceProperties.deviceType);

dprintf("API Version: %d.%d.%d\n",
(deviceProperties.apiVersion>>22)&0x3FF,
(deviceProperties.apiVersion>>12)&0x3FF,
(deviceProperties.apiVersion&0xFFF));

}//End for i

An example output for a single GPU system would be:

DRAFT

ve
rsi

on

0.6
81

48 Chapter 5. Devices Enumeration

Device Name: GT 750
Device Type: 2
API Version: 1.0.8

In Vulkan, the API version is encoded as a 32-bit integer with
the major and minor version being encoded into bits 31-22 and
21-12 respectively (for 10 bits each.); the final 12-bits encode
the patch version number. These handy macros should help
with fetching some human readable digits from the encoded
API integer.

#define VK_MAKE_VERSION(major, minor, patch) \
(((major) << 22) | ((minor) << 12) | (patch))

Taking the device count provided by the enumerate function,
you can correctly allocate enough VkPhysicalDevice structs
for every device on the system. To do this you call the enu-
merate function once again, this time passing a pointer to
the allocated array. You also pass the same unsigned integer
containing the device count. When said integer does not equal
zero, the function treats the value as the size of the passed
device array. Since you’ve got this value directly from Vulkan,
you can assume it’s correct. However, to be sure, you can
check this value again after the function call as Vulkan will
change this value to the amount of device structs actually
written into memory.

A call to vkGetPhysicalDeviceProperties can be useful if
you are interested in retrieving information about the physical
devices in the system. It will tell you API version, driver
version, limitations, and sparse properties. For example:

// Vulkan 1.0 version number
#define VK_API_VERSION_1_0 VK_MAKE_VERSION(1, 0, 0)

// We are able to extract the parameters
// from the version number:
#define VK_VER_MAJOR(X) ((((uint32_t)(X))>>22)&0x3FF)
#define VK_VER_MINOR(X) ((((uint32_t)(X))>>12)&0x3FF)
#define VK_VER_PATCH(X) (((uint32_t)(X)) & 0xFFF)

DRAFT

ve
rsi

on

0.6
81

5.2 Summary 49

You should now have an array of VkPhysicalDevice’s, with
each element containing the handle to each compatible piece
of hardware on the system. Using this array, you can get the
low-down on each device by using the function:

vkGetPhysicalDeviceProperties()

This function takes two parameters: a VkPhysicalDevice
struct to get properties from, and a pointer to a VkPhysi-
calDeviceProperties struct in which to store the data. Using
the device count, you can allocate a sufficient amount of prop-
erty structs for all devices on the system. After allocating said
property structs, you can then iterate through each VkPhysi-
calDevice and get their properties by enclosing the function
inside a loop.

5.2 Summary

Each system configuration will be different (i.e., desktop com-
puter to a mobile tablet). The ability to identify and extract
hardware information is crucial - especially with multiple
CPU/GPU configurations. You’re able to support a larger
range of different hardware configurations (e.g., discreet GPU
and integrated GPU) through explicit access to multiple de-
vices. Not to mention support different hardware generations
of the future (forward thinking).

5.3 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

DRAFT

ve
rsi

on

0.6
81

50 Chapter 5. Devices Enumeration

5.3.1 Question 1

Which function do we use to determine the number of ‘physi-
cal’ devices available on the system?

a vkCreateDevices
b VulkanCountDevices
c VkGetNumberOfDevices
d vkEnumPhyDevices
e vkEnumeratePhysicalDevices

5.3.2 Question 2

What are the three parameters passed to
VK_MAKE_VERSION(..)?

a day, month, year
b minor, major, version
c major, minor, patch
d platform, release, undefined

5.3.3 Question 3

We want the physical device’s name, which Vulkan API func-
tion do we use:

a VkGetDeviceName
b vkGetPhysicalDeviceProperties
c GetPhysicalProperties
d VulkanGetPropertiesForDevice

(Q1: Answer e; Q2: Answer c; Q3: Answer b;)

DRAFT

ve
rsi

on

0.6
81

6. Device Creation

6.1 Devices

So far you’ve have the ability to get the physical devices
present on the system, create an instance and query the queue
families supported by the physical devices. Vulkan does not
operate directly on a VkPhysicalDevice. Instead it operates
on views of a VkPhysicalDevice which it represents as a
VkDevice and calls a logical device. This additional layer of
abstraction is what allows us to tie together everything into
an abstract usable solution.

Like the other structures you’ve filled out previously, sType,
pNext, and flags are mandatory here.

Once your desired physical device has been chosen, you can
begin polling it for more information needed in creating a log-

DRAFT

ve
rsi

on

0.6
81

52 Chapter 6. Device Creation

ical device. The first step in this process is getting the number
of available queue families on the device. A queue is where
our GPU commands will go in order to be executed by the
hardware. There are various types of queue families such as
Graphics or Compute. The amount and type of queue families
may differ among different devices, but they all contain at
least the Graphics queue family. Most operations, graphics
or no, can be performed in the Graphics queue family, so the
other families are simply more descriptive family identifiers.

VkDeviceCreateInfo depends on VkQueueCreateInfo,
you’ll make that struct first. You’ll only be creating a single
queue to start with so the parameters of the VkQueueCre-
ateInfo struct are pretty straightforward. The system only
has a single family so the family index will be zero and the
queue count is one. The queue priorities parameter takes a
pointer to an array of floats with the execution priority for
each queue. Since there is only one queue, you simply pass
this a single float value of 1.0. According to the specification,
queue priority can range from 0.0 to 1.0, with 1.0 being higher
priority.

The last struct you’ll need to build is the VkDeviceCreate-
Info struct. As mentioned earlier, this struct contains values
for any layers, extensions, or device features you wish to en-
able for the new device. For now you’ll not be using any of
these, you’ll see their importance later on as you start to add
more features. This struct also needs a count of how many
VkQueueCreateInfo structs, you’ll be passing, and a pointer
to an array of those structs. Since you only have the one queue
info struct, you’ll assign it to these parameters.

At last you’re now ready to create our logical VkDevice. To
do this you’ll will use the function:

vkCreateDevice()

The sample listing will create and setup our VkDevice:

DRAFT

ve
rsi

on

0.6
81

6.1 Devices 53

VkDevice g_device = NULL;
{
// Physical device memory properties structure
VkPhysicalDeviceMemoryProperties memoryProperties;
// Fill structure with information
vkGetPhysicalDeviceMemoryProperties(
// physicalDevice
g_physicalDevice,
// pMemoryProperties
&memoryProperties);

// Here's where we initialize our queues
VkDeviceQueueCreateInfo queueCreateInfo = {};
// manditory stype
queueCreateInfo.sType = ←↩

VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
// Use the first queue family in the family list
queueCreateInfo.queueFamilyIndex = 0;
queueCreateInfo.queueCount = 1;
float queuePriorities[] = { 1.0f };
queueCreateInfo.pQueuePriorities = queuePriorities;

VkDeviceCreateInfo dci = {};
// manditory stype
dci.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
// Set queue(s) into the device
dci.queueCreateInfoCount = 1;
dci.pQueueCreateInfos = &queueCreateInfo;
dci.enabledLayerCount = 1;
dci.ppEnabledLayerNames = layers;
dci.enabledExtensionCount = 2;
dci.ppEnabledExtensionNames = extensions;

VkPhysicalDeviceFeatures features = {};
features.shaderClipDistance = VK_TRUE;
dci.pEnabledFeatures = &features;

// Ideally, we'd want to enumerate and find the best
// device, however, we just use the first device
// `physicalDevices[0]' for our sample, which we
// stored in the previous chapter
VkResult result =
vkCreateDevice(
// physicalDevice
g_physicalDevice,
// pCreateInfo
&dci,
// pAllocator
NULL,
// pDevice
&g_device);

DRAFT

ve
rsi

on

0.6
81

54 Chapter 6. Device Creation

// check if we were successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create logical device!");
}

To get the data about the different available queue families
and their properties you can call the function:

vkGetPhysicalDeviceQueueFamilyProperties()

This function has three parameters: a VkPhysicalDevice for
our chosen device, a pointer to an unsigned integer, and a
pointer to an array of VkQueueFamilyProperties structs.
This function operates just like the enumerate function from
earlier. You’ll call it once, passing our VkInstance and an
integer address, with the array pointer as NULL and the total
available family count will be written into our integer. Again
you’ll use that information to allocate enough VkQueueFam-
ilyProperties structs for each of the families available. Then,
like before, you call the function a second time including the
now allocated property array and Vulkan will fill said array
with the desired data.

You can create many instances of the same queue family
and set multiple queues into a VkDeviceCreateInfo structure.
Just be sure to set the queueCount correctly. In Vulkan you
can also control the priority of each queue with an array of
normalized floats. A value of 1.0 has highest priority.

With that you should have a logical device setup from a
physical device with your associated queues containing your
application-provided information. From here you are now
ready to move onto the following chapters to create the appro-
priate swap-chains and rendering components.

DRAFT

ve
rsi

on

0.6
81

6.2 Summary 55

6.2 Summary

You should have our logical device (i.e., VkDevice). You are
ready to start configuring the device resources (e.g., memory,
framebuffer and swap-chains).

6.3 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

6.3.1 Question 1

You create a logical device using the function:

a vkCreateLogicalDevices
b VkDevice
c VkGetDevices
d VulkanDevice

6.3.2 Question 2

Which function gets the data about the different available
queue families and their properties for the device:

a VkGetPhysicsDeviceProperites
b vKGetDeviceFamilyProperties
c vkDeviceQueue
d vkGetPhysicalDeviceQueueFamilyProperties

DRAFT

ve
rsi

on

0.6
81

56 Chapter 6. Device Creation

(Q1: Answer b; Q2: Answer d;)

DRAFT

ve
rsi

on

0.6
81

7. Swap-Chains

7.1 Buffering & Synchronization

Up until now everything you’ve done with Vulkan has been
setting the ground work with no real end-goal of how this is
all going to connect to the renderer. You’re now going to use
the results of previous chapters to build a swap-chain which
plays a crucial part in rendering.

So what is a swap-chain? A swap-chain is effectively a circu-
lar buffer of images (and image-views) for presenting your
graphical output to the window. It specifies how your buffer
will be rendered (choice of double, triple, or more, buffering);
as well as the synchronization mode (swap, tear, or vertical
synchronization).

DRAFT

ve
rsi

on

0.6
81

58 Chapter 7. Swap-Chains

7.1.1 Swap-chain

This is where you begin to write your core graphical com-
ponents. Each of these graphical components will typically
depend upon each other (i.e., each chapter will build upon the
previous chapter). For example, setting up the physical device
(VkPhysicalDevice) and window surface (VkSurfaceKHR)
was covered previously and is used here. So if you didn’t
create a VkPhysicalDevice, you won’t be able to create a
swap-chain. The basic setup of a double buffered swap-chain
listing is shown below.

// swap-chain handle
VkSwapchainKHR g_swapChain = NULL;

// Create swap chain
{
// swap chain creation:

// structure listing surface capabilities
VkSurfaceCapabilitiesKHR surfaceCapabilities = {};
// fill structure with data
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(
// physicalDevice
g_physicalDevice,
// surface
g_surface,
// pSurfaceCapabilities
&surfaceCapabilities);

VkExtent2D surfaceResolution =
surfaceCapabilities.currentExtent;

g_width = surfaceResolution.width;
g_height = surfaceResolution.height;

VkSwapchainCreateInfoKHR ssci = {};
// manditory stype
ssci.sType =
VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;

ssci.surface = g_surface;
// We'll use 2 for `double' buffering
ssci.minImageCount = 2;
ssci.imageFormat = VK_FORMAT_B8G8R8A8_UNORM;
ssci.imageColorSpace =
VK_COLORSPACE_SRGB_NONLINEAR_KHR;

ssci.imageExtent = surfaceResolution;
ssci.imageArrayLayers = 1;

DRAFT

ve
rsi

on

0.6
81

7.1 Buffering & Synchronization 59

ssci.imageUsage =
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

ssci.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
ssci.preTransform = ←↩

VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
ssci.compositeAlpha =
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;

ssci.presentMode = VK_PRESENT_MODE_MAILBOX_KHR;
// If we want clipping outside the extents
ssci.clipped = true;
ssci.oldSwapchain = NULL;

VkResult result =
vkCreateSwapchainKHR(
// device
g_device,
// pCreateInfo
&ssci,
// pAllocator
NULL,
// pSwapchain
&g_swapChain);

// check if we were successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create swapchain.");

}

You’re almost there, now all that’s left is to do, is call the
function for actually creating the swap-chain resources and
making it active for a VkCommandBuffer. You’ll be explor-
ing for the first time how to utilize the physical device surface
properties and formats to guide your creation of the swap-
chain. Like all creation functions in Vulkan, you’ll be filling
out a creation info structure VkSwapchainCreateInfoKHR
to actually create our swap-chain.

One thing, before you actually do that, you also need to touch
on presentation modes. In Vulkan you get to choose how you
want frames presented to the swap-chain. The presentation
modes to choose from are:

VK_PRESENT_MODE_MAILBOX_KHR
VK_PRESENT_MODE_IMMEDIATE_KHR
VK_PRESENT_MODE_FIFO_RELAXED_KHR
VK_PRESENT_MODE_FIFO_KHR

DRAFT

ve
rsi

on

0.6
81

60 Chapter 7. Swap-Chains

All compliant implementations of Vulkan must support
VK_PRESENT_MODE_FIFO_KHR. The others are op-
tional.

VK_PRESENT_MODE_MAILBOX_KHR Optimized v-
sync technique, will not screen-tear. Has more latency than
tearing. Generally speaking this is the preferred presentation
mode if supported for it is the lowest latency non-tearing
presentation mode.

VK_PRESENT_MODE_IMMEDIATE_KHR does not
vertical synchronize and will screen-tear if a frame is late.
This is basically useless unless you’re doing one-off render-
ing to a surface where the result is not immediately needed.

VK_PRESENT_MODE_FIFO_RELAXED_KHR nor-
mally vertical synchronizes but will screen-tear if a frame
is late. This is the same as ’late swap tearing’ extensions
in GL/D3D. The idea behind this is to allow late swaps to
occur without synchronization to the video frame. It does
reduce visual stuffer on late frames and reduces the stall on
subsequent frames.

VK_PRESENT_MODE_FIFO_KHR will vertical synchro-
nizes and won’t screen-tear. This is your standard vertical
synchronization.

7.2 Creating Images

Swap-chains do not contain any images - they just manage
them. Hence, we need to create images for our ‘double’
buffered screen output.

// Store a pointer to the created images
VkImage* g_presentImages = NULL;

// Create two images for 'double' buffering
{

DRAFT

ve
rsi

on

0.6
81

7.3 Image Views 61

// temporary variable
uint32_t imageCount = 0;
// ask how many images we need to create
vkGetSwapchainImagesKHR(g_device, g_swapChain, &←↩

imageCount, NULL);
// we should have 2 images for double buffering
DBG_ASSERT(imageCount==2);

// this should be 2 for double-buffering
g_presentImages = new VkImage[imageCount];

// link the images to the swapchain
VkResult result =
vkGetSwapchainImagesKHR(
// device
g_device,
// swapchain
g_swapChain,
// pSwapchainImageCount
&imageCount,
// pSwapchainImages
g_presentImages);

// check if we were successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create swap-chain images");

}

You can ask your swap-chain how many images it holds.
For our simple double buffered example, this should be 2.
However, you have the flexibility to use as many images as
you want (e.g., triple buffered, quad-triple). You can then go
ahead and allocate the necessary images (i.e., VkImage) and
attach them to your swap-chain.

7.3 Image Views

Interestingly, you can’t directly access an ‘Image’ - instead
you must create an ‘ImageView’. This provides a ‘handle’ for
the image, as shown below:

// Imageview handle
VkImageView *g_presentImageViews = NULL;
// Create image view and attach them to the images

DRAFT

ve
rsi

on

0.6
81

62 Chapter 7. Swap-Chains

{
// We have 2 for double buffering
g_presentImageViews = new VkImageView[2];

// create image view for each image
for(uint32_t i = 0; i < 2; ++i)
{
// create VkImageViews for our swap chain
// VkImages buffers:
VkImageViewCreateInfo ivci = {};
// manditory
ivci.sType =
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;

ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = VK_FORMAT_B8G8R8A8_UNORM;
ivci.components.r = VK_COMPONENT_SWIZZLE_R;
ivci.components.g = VK_COMPONENT_SWIZZLE_G;
ivci.components.b = VK_COMPONENT_SWIZZLE_B;
ivci.components.a = VK_COMPONENT_SWIZZLE_A;
ivci.subresourceRange.aspectMask = ←↩

VK_IMAGE_ASPECT_COLOR_BIT;
ivci.subresourceRange.baseMipLevel = 0;
ivci.subresourceRange.levelCount = 1;
ivci.subresourceRange.baseArrayLayer = 0;
ivci.subresourceRange.layerCount = 1;
ivci.image = ←↩

g_presentImages[i];

VkResult result =
vkCreateImageView(
// device
g_device,
// pCreateInfo
&ivci,
// pAllocator
NULL,
// pView
&g_presentImageViews[i]);

// check everything went okay
DBG_ASSERT_VULKAN_MSG(result,
"Could not create ImageView.");

}// End for i
}

DRAFT

ve
rsi

on

0.6
81

7.4 Summary 63

7.4 Summary

In this chapter, you’ve got a little closer to actually rendering
something on screen. For example, at this stage, you’ve
initialized Vulkan, created a compatible surface, and now, a
swap-chain structure with images. Your swap-chain will be
responsible for managing your front and back buffer. You’ll
need the your swap-chain later on in the main render loop,
where you’ll have swap-chain images passed into the render
pipeline (e.g. you’ll get the image index and set it to be
drawn/updated and presented).

7.5 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

7.5.1 Question 1

We create a swap-chain using the function:

a vkCreateLogicalChain
b VkSwapChain
c CreateSwapChain
d vkCreateSwapchainKHR

7.5.2 Question 2

When we create VkImageView’s, we define a VkIm-
ageViewCreateInfo structure, what is the value for the
‘sType’?

DRAFT

ve
rsi

on

0.6
81

64 Chapter 7. Swap-Chains

a VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO
b VK_STRUCTURE_TYPE_IMAGE_VIEW_INFO
c NULL
d -1
e STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO

7.5.3 Question 3

The VK_PRESENT_MODE_MAILBOX_KHR define is:

a Does not vertical synchronize and will screen-tear if a
frame is late.

b Optimized v-sync technique that will not screen-tear
(but has more latency than tearing).

c Will vertical synchronizes and won’t screen-tear.

(Q1: Answer d; Q2: Answer a; Q3: Answer b;)

DRAFT

ve
rsi

on

0.6
81

8. Device Queues

8.1 Commands

Your computer typically has a CPU with 4, 8 or more cores.
However, traditional graphics API are only able to utilize a
single core - so only a single CPU core is able to speak to
the GPU at any one time. This was a serious bottleneck that
Vulkan addressed through the use of the device queue and cus-
tom command buffers. You’re now able to take full advantage
of both the CPU and GPU - use all of their resources (multi-
core scaling for future hardware). With Vulkan you can now
have ‘all’ your CPU cores speak to your GPU simultaneously
(remember, you may have multiple CPUs and GPUs - you
have to think of the future). Previously, you’d not be able to
do amazing things on the GPU beacuse the CPU could not
feed the GPU fast enough - however, with every single core
of the GPU beging pushed to its limits - things have changed.

DRAFT

ve
rsi

on

0.6
81

66 Chapter 8. Device Queues

The Vulkan API means you’re no longer limited by the CPU
- instead the limitation is determined by the systems power
(GPU) and your software abilities.

For your simple program, you need to give your device com-
mands. These commands get queued and executed (depend-
ing upon the specified order and dependencies). Commands
are recorded into command buffers ahead of execution time.
These same buffers are then submitted to queues for execution.
Each physical devices provides a family of queues to choose
from. The choice of the queue depends on the task at hand.

A Vulkan queue can support one or more of the following
operations (in order of most common):

graphic VK_QUEUE_GRAPHICS_BIT
compute VK_QUEUE_COMPUTE_BIT
transfer VK_QUEUE_TRANSFER_BIT

sparse memory VK_QUEUE_SPARSE_BINDING_BIT

This is encoded in the queueFlags field of the vkQueueFam-
ilyProperties structures filled out by vkGetPhysicalDevice-
QueueFamilyProperties. Which, like vkEnumeratePhysi-
calDevices can also be used to query the count of available
queue families.

While the queue support bits are pretty
straightforward; something must be said about
VK_QUEUE_SPARSE_BINDING_BIT. If this bit is
set, it indicates that the queue family supports sparse memory
management operations. Which means you can submit
operations that operate on sparse resources. If this bit is
not present, submitting operations with sparse resource is
undefined. Sparse resources will be covered in later chapters
as they are an advanced topic.

The listing below allows you to output your device memory
capabilities:

DRAFT

ve
rsi

on

0.6
81

8.1 Commands 67

// temporary variable
uint32_t queueFamilyCount = 0;

// query the device for the family count
vkGetPhysicalDeviceQueueFamilyProperties(
// physicalDevice
physicalDevice,
// pQueueFamilyPropertyCount
&queueFamilyCount,
// pQueueFamilyProperties
NULL);

// create array of the size of the family count
vector<VkQueueFamilyProperties> familyProperties(←↩

queueFamilyCount);
// retrieve properties
vkGetPhysicalDeviceQueueFamilyProperties(
// physicalDevice
physicalDevice,
// pQueueFamilyPropertyCount
&queueFamilyCount
// pQueueFamilyProperties
&damilyProperties[0]);

// Print the families
for (uint32_t i = 0; i < deviceCount; ++i)
{
for (uint32_t j = 0; j < queueFamilyCount; ++j)
{
dprintf("Count of Queues: %d\n", familyProperties[j←↩

].queueCount);
dprintf("Supported operationg on this queue:\n");

if (familyProperties[j].queueFlags & ←↩
VK_QUEUE_GRAPHICS_BIT)
dprintf("\t\t Graphics\n");

if (familyProperties[j].queueFlags & ←↩
VK_QUEUE_COMPUTE_BIT)
dprintf("\t\t Compute\n");

if (familyProperties[j].queueFlags & ←↩
VK_QUEUE_TRANSFER_BIT)
dprintf("\t\t Transfer\n");

if (familyProperties[j].queueFlags & ←↩
VK_QUEUE_SPARSE_BINDING_BIT)
dprintf("\t\t Sparse Binding\n");

}// End for j
}// End for i

Example output for your system, might be:

DRAFT

ve
rsi

on

0.6
81

68 Chapter 8. Device Queues

Count of Queues: 16
Supported operationg on this queue:
Graphics
Compute
Transfer
Sparse Binding

Count of Queues: 1
Supported operationg on this queue:
Transfer

The actual operations within the VkCommandBuffer should
not sound too unfamiliar. A RenderPass is similar to
framebuffer-object binding, and a DescriptorSet handles uni-
form bindings (buffer, texture), which you’ll cover more later
on.

• VkPhysicalDevice: The device is used to query infor-
mation, and to create most of Vulkan’s API objects
• Queue: A device can expose multiple queues. For

example, there can be dedicated queue to copying data,
or the compute and/or graphics queue. Operations on
a single queue are typically processed in-order, but
multiple queues can overlap in parallel
• VkCommandBuffer: Here we record the general com-

mands such as setting state, executing work like draw-
ing from vertex-buffers, dispatching compute grids,
copying between buffers. . . function wise nothing fun-
damentally different. While there are still costs for
building, the submission to the queue will be rather
quick

// Store our command and queue handles
VkCommandBuffer g_drawCmdBuffer = NULL;
VkQueue g_presentQueue = NULL;

// Give our device some commands (orders)
{
// we can now get the device queue we will
// be submitting work to:
vkGetDeviceQueue(
// device
g_device,
// queueFamilyIndex

DRAFT

ve
rsi

on

0.6
81

8.1 Commands 69

0,
// queueIndex
0,
// pQueue
&g_presentQueue);

// create our command buffers:
VkCommandPoolCreateInfo cpci = {};
// manditory
cpci.sType = ←↩

VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cpci.flags = ←↩

VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
cpci.queueFamilyIndex = 0;

// store query result
VkCommandPool commandPool;

VkResult result =
vkCreateCommandPool(
// device
g_device,
// pCreateInfo
&cpci,
// pAllocator
NULL,
// pCommandPool
&commandPool);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create command pool.");

VkCommandBufferAllocateInfo cbai = {};
cbai.sType = ←↩

VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cbai.commandPool = commandPool;
cbai.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cbai.commandBufferCount = 1;

result =
vkAllocateCommandBuffers(
// device
g_device,
// pAllocateInfo
&cbai,
// pCommandBuffers
&g_drawCmdBuffer);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to allocate draw command buffer.");

}

DRAFT

ve
rsi

on

0.6
81

70 Chapter 8. Device Queues

8.2 Summary

Since GPU performance is increasing faster than single/multi
core CPU performance, we can end up GPU bound (GPU
is waiting for the CPU). Hence, optimising the command
buffer, we allow multi-threaded command buffer recording
and queues to gain greater throughput. While the new API
requires additional work, it offers significant performance
improvements in real-time applications that want to push the
limits of the CPU and GPU. In conclusion, we now have sup-
port for multi-threaded command buffer recording, low-level
memory management, and multiple asynchronous queues.

8.3 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

8.3.1 Question 1

Which best defines the CommandBuffer?

a Integrates the physical device and the swapchain.
b Controls the encoding and decoding of graphical data.
c Records general commands, such as, setting states, exe-

cuting work like drawing from vertex-buffers, dispatch-
ing compute grids, and copying between buffers.

8.3.2 Question 2

What is the function for allocating a command buffer?

DRAFT

ve
rsi

on

0.6
81

8.3 Test Yourself 71

a vkCreateCommandBuffer
b AllocateCommandBuffer
c vkAllocateCommandBuffers
d vkCommandBufferAllocate

(Q1: Answer c; Q2: Answer c;)

DRAFT

ve
rsi

on

0.6
81

9. Framebuffer

9.1 Framebuffer

The term ‘framebuffer’ is traditionally referred to as the video
memory used to hold the image displayed on the screen. With
the memory size for the image depending primarily on the res-
olution of the screen and the color depth used per pixel (8-bit,
16-bit, 32-bit). In Vulkan, we have a VkFramebuffer, which
is a collection of VkImageViews. The thing to remember is,
about the Vulkan framebuffer is you control the images you
are rendering at any given point (i.e., not just a single image
for the whole screen). As the VkFramebuffer can contain
multiple images - more than the renderer would be able to
render at once.

Below shows our basic framebuffer/renderpass setup code:

DRAFT

ve
rsi

on

0.6
81

9.1 Framebuffer 73

// Store handles to framebuffer
VkFramebuffer* g_frameBuffers = NULL;
VkRenderPass g_renderPass = NULL;

// Frame buffer
{
// define our attachment points
VkAttachmentDescription pass[1] = { };
pass[0].format = VK_FORMAT_B8G8R8A8_UNORM;
pass[0].samples = VK_SAMPLE_COUNT_1_BIT;
pass[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
pass[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE←↩

;
pass[0].stencilLoadOp = ←↩

VK_ATTACHMENT_LOAD_OP_DONT_CARE;
pass[0].stencilStoreOp = ←↩

VK_ATTACHMENT_STORE_OP_DONT_CARE;
pass[0].initialLayout = ←↩

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
pass[0].finalLayout = ←↩

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

VkAttachmentReference ar = {};
ar.attachment = 0;
ar.layout = ←↩

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

// create the one main subpass of our renderpass:
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = ←↩

VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &ar;
subpass.pDepthStencilAttachment = NULL;

// create our main renderpass:
VkRenderPassCreateInfo rpci = {};
rpci.sType = ←↩

VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rpci.attachmentCount = 1;
rpci.pAttachments = pass;
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;

VkResult result =
vkCreateRenderPass(
// device
g_device,
// pCreateInfo
&rpci,
// pAllocator
NULL,

DRAFT

ve
rsi

on

0.6
81

74 Chapter 9. Framebuffer

// pRenderPass
&g_renderPass);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create renderpass");

// create our frame buffer:
VkImageView frameBufferAttachments[1] = {0};

VkFramebufferCreateInfo fbci = {};
fbci.sType = ←↩

VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbci.renderPass = g_renderPass;
// must be equal to the attachment count
// on render pass
fbci.attachmentCount = 1;
fbci.pAttachments = frameBufferAttachments;
fbci.width = g_width;
fbci.height = g_height;
fbci.layers = 1;

// create a framebuffer per swap chain imageView:
g_frameBuffers = new VkFramebuffer[2];
for(uint32_t i = 0; i < 2; ++i)
{
frameBufferAttachments[0] = g_presentImageViews[i ←↩

];

result =
vkCreateFramebuffer(
// device
g_device,
// pCreateInfo
&fbci,
// pAllocator
NULL,
// pFramebuffer
&g_frameBuffers[i]);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create framebuffer.");

}// End for i

}

DRAFT

ve
rsi

on

0.6
81

9.2 Summary 75

9.2 Summary

Vulkan’s approach to rendering and the framebuffer is more
explicit - denoting every detail, rather than letting your
driver/API make assumptions. This added control and infor-
mation, will aid you and everyone in the future, for example,
it helps with tile based solutions, so you have direct control
over rendering and the dependencies.

9.3 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

9.3.1 Question 1

What is the name of the function for creating a framebuffer?

a vkCreateFramebuffer
b CreateFramebuffer
c vkNewFramebuffer
d VulkanCreateFramebuffer

9.3.2 Question 2

The Vulkan VkFramebuffer is a collection of VkIm-
ageViews?

a true
b false

DRAFT

ve
rsi

on

0.6
81

76 Chapter 9. Framebuffer

(Q1: Answer b; Q2: Answer a;)

DRAFT

ve
rsi

on

0.6
81

10. Displaying (Presenting)

10.1 Presenting

Finally, you’ll have setup your Vulkan graphical components -
but you haven’t got any output - how do you know everything
is connected and working together? At this point, you’ve
written a lot of code - and yet to see anything in return - which
can be a bit disheartening. You’ll do a simple render test in
this chapter so you can check you’re on track. The sample
in this chapter, will let you clear the screen using the Vulkan
API. The ‘VulkanRender’ function below is constantly called
(in the ‘render-loop’). Each frame you’ll clear the surface
of the presentation screen to a changing color (magenta to
white). Not a very sophisticated example, but it enables you
to test that everything is running - compared to a blank screen.

// called each time we draw the screen

DRAFT

ve
rsi

on

0.6
81

78 Chapter 10. Displaying (Presenting)

void VulkanRender()
{
// Render loop - refreshes the graphical output
// clearing screen and gradually changing color

// temp variable to get the image id from
uint32_t nextImageIdx;

// query the swap-chain for the image id
vkAcquireNextImageKHR(
// device
g_device,
// swapchain
g_swapChain,
// timeout
UINT64_MAX,
// semaphore
VK_NULL_HANDLE,
// fence
VK_NULL_HANDLE,
// pImageIndex
&nextImageIdx);

// buffer commands
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = ←↩

VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = ←↩

VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

// start recording commands
vkBeginCommandBuffer(g_drawCmdBuffer, &beginInfo)←↩

;
{
// temporary float that oscilates between 0 and 1
// to gradually change the color on the screen
static float aa = 0.0f;
// slowly increment
aa += 0.001f;
// when value reaches 1.0 reset to 0
if (aa >= 1.0) aa = 0;

// activate render pass:
// clear color (r,g,b,a)
VkClearValue clearValue[] = {
{ 1.0f, aa, 1.0f, 1.0f }, //color
{ 1.0, 0.0 } }; //depth stencil

// define render pass structure
VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType = ←↩
VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;

DRAFT

ve
rsi

on

0.6
81

10.1 Presenting 79

renderPassBeginInfo.renderPass = g_renderPass;
// which image to draw on (use the id from
// the swap-chain lookup we did at the start)
renderPassBeginInfo.framebuffer = g_frameBuffers[←↩
nextImageIdx];

VkOffset2D a = {0, 0};
VkExtent2D b = {g_width, g_height};
VkRect2D c = {a,b};
renderPassBeginInfo.renderArea = c;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValue;

// command to start a render pass
vkCmdBeginRenderPass(
g_drawCmdBuffer,
&renderPassBeginInfo,
VK_SUBPASS_CONTENTS_INLINE);

{
// to come later - call draw commands
// to present geometry data/triangles
}

// command to end the render pass
vkCmdEndRenderPass(g_drawCmdBuffer);

}
// end recording commands
vkEndCommandBuffer(g_drawCmdBuffer);

// present:
// create a fence to inform us when the GPU
// has finished processing our commands

// setup the type of fence
VkFence renderFence;
VkFenceCreateInfo fenceCreateInfo = {};
fenceCreateInfo.sType = ←↩

VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;

// create the fence
vkCreateFence(
// device
g_device,
// pCreateInfo
&fenceCreateInfo,
// pAllocator
NULL,
// pFence
&renderFence);

// configure the queue submit structure
VkSubmitInfo si = {};

DRAFT

ve
rsi

on

0.6
81

80 Chapter 10. Displaying (Presenting)

si.sType = ←↩
VK_STRUCTURE_TYPE_SUBMIT_INFO;

si.waitSemaphoreCount = 0;
si.pWaitSemaphores = VK_NULL_HANDLE;
si.pWaitDstStageMask = NULL;
si.commandBufferCount = 1;
si.pCommandBuffers = &g_drawCmdBuffer;
si.signalSemaphoreCount = 0;
si.pSignalSemaphores = VK_NULL_HANDLE;

// submit the command queue (notice, we
// also pass the fence, to let us know the
// gpu has finished)
vkQueueSubmit(
// queue
g_presentQueue,
// submitCount
1,
// pSubmits
&si,
// fence
renderFence);

// wait until the GPU has finished processing
// the commands
vkWaitForFences(
g_device,
1,
&renderFence,
VK_TRUE,
UINT64_MAX);

vkDestroyFence(
g_device,
renderFence,
NULL);

// present the image on the screen (flip the
// swap-chain image)
VkPresentInfoKHR pi = {};
pi.sType = ←↩

VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
pi.pNext = NULL;
pi.waitSemaphoreCount = 0;
pi.pWaitSemaphores = VK_NULL_HANDLE;
pi.swapchainCount = 1;
pi.pSwapchains = &g_swapChain;
pi.pImageIndices = &nextImageIdx;
pi.pResults = NULL;
vkQueuePresentKHR(g_presentQueue, &pi);

}// End VulkanRender(..)

DRAFT

ve
rsi

on

0.6
81

10.2 Summary 81

Figure 10.1: Changing Color - While our simple clear-screen
example only displays a window that is changing color - it
helps show us that our Vulkan components are actually work-
ing together.

10.2 Summary

At the end of this chapter, you should have a ‘minimal’ Vulkan
program working - a skeleton configuration. Now you’ve
connected the bones together to get the Vulkan program up
and running quickly - you can work on fleshing it out and
adding the meat (i.e., some actual graphics). Remember,
your implementation still lacks lots of checking and device
enumeration - but you should start to be getting a feel for how
things work. So what else is missing? To get triangles on
the screen (i.e., a full 3D renderer configuration), you need
to add the shader buffer and some vertex data; not to mention
a ‘depth buffer’. The following chapters will now take you a
step further to get geometry on screen - ‘hello triangle’.

DRAFT

ve
rsi

on

0.6
81

82 Chapter 10. Displaying (Presenting)

10.3 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

10.3.1 Question 1

What two arguments does vkBeginCommandBuffer take?

a VkCommandBuffer, VkCommandBufferBeginInfo
b VkCommandBuffer, VkImage
c VkRenderPass, VkCommandBufferBeginInfo
d VkImage, VkImage

10.3.2 Question 2

For the VkSubmitInfo structure, what is the ‘sType’ param-
eter?

a STRUCTURE_TYPE_SUBMIT_INFO
b VK_STRUCTURE_TYPE_SUBMIT_INFO
c NULL
d -1
e VK_STRUCTURE_INFO

(Q1: Answer a; Q2: Answer b;)

DRAFT

ve
rsi

on

0.6
81

11. Triangle Data

11.1 Vertices & Buffers

In this chapter, you’ll create a vertex buffer for a basic 3-
dimensional colored triangle. Once you get your triangle on
screen, you’ll create and modify a matrix transform (i.e., view
and projection matrices) to move the triangle around in real-
time. Once you have one triangle on screen, you can expand
the sample code to include more triangles (complex meshes)
and multiple buffers and optimisations.

Here is the listing for the creation of the buffer and vertex
data:

// Handle to our vertex buffer data
VkBuffer g_vertexInputBuffer = NULL;

// Create vertex buffer setup its configuration
{

DRAFT

ve
rsi

on

0.6
81

84 Chapter 11. Triangle Data

// Vertex info
struct vertex
{
float x, y, z, w; // position
float r, g, b; // color

};

// create our vertex buffer:
VkBufferCreateInfo vertexInputBufferInfo = {};
// manditory (type of buffer)
vertexInputBufferInfo.sType = ←↩

VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
// size in bytes of our data
vertexInputBufferInfo.size = sizeof(vertex) * 3;
// what the buffer will hold
vertexInputBufferInfo.usage = ←↩

VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
// sharing/access level
vertexInputBufferInfo.sharingMode = ←↩

VK_SHARING_MODE_EXCLUSIVE;
// ignore for now
vertexInputBufferInfo.queueFamilyIndexCount = 0;
vertexInputBufferInfo.pQueueFamilyIndices = NULL;

// create the vertex buffer
VkResult result =
vkCreateBuffer(
// device
g_device,
// pCreateInfo
&vertexInputBufferInfo,
// pAllocator
NULL,
// pBuffer
&g_vertexInputBuffer);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create vertex input buffer.");

// allocate memory for buffers:

// get the memory information - type of memory ←↩
required

// for our vertex buffer (we can't put the data just ←↩
anywhere)

VkMemoryRequirements vertexBufferMemoryRequirements =←↩
{};

vkGetBufferMemoryRequirements(
// device
g_device,
// buffer

DRAFT

ve
rsi

on

0.6
81

11.1 Vertices & Buffers 85

g_vertexInputBuffer,
// pMemoryRequirements
&vertexBufferMemoryRequirements);

// specify our memory allocation details
// (i.e., the size and type of memory, which we
// pass to the allocator when we want to create a
// chunk of memory)
VkMemoryAllocateInfo bufferAllocateInfo = {};
// manditory structure define
bufferAllocateInfo.sType = ←↩

VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
// how much memory in bytes
bufferAllocateInfo.allocationSize = ←↩

vertexBufferMemoryRequirements.size;
// ignore
bufferAllocateInfo.pNext = NULL;

// the memory our vertex needs
uint32_t vertexMemoryTypeBits = ←↩

vertexBufferMemoryRequirements.memoryTypeBits;

// we need to search through the physical
// devices memory and find the index of the
// memory index that we need

// set the search flag to a `default'
VkMemoryPropertyFlags vertexDesiredMemoryFlags = ←↩

VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;

// read the device memory properties
VkPhysicalDeviceMemoryProperties memoryProperties;
vkGetPhysicalDeviceMemoryProperties(g_physicalDevice←↩

, &memoryProperties);

// check each of the memory types and store
// the one we want
for(uint32_t i = 0; i <VK_MAX_MEMORY_TYPES; ++i)
{
VkMemoryType memoryType = memoryProperties.←↩

memoryTypes[i];
// is this the memory type we are looking for?
if((memoryType.propertyFlags & ←↩

VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))
{
// save location
bufferAllocateInfo.memoryTypeIndex = i;

// exit loop
}

}// End for i

// allocate memory using the allocator info
VkDeviceMemory vertexBufferMemory;

DRAFT

ve
rsi

on

0.6
81

86 Chapter 11. Triangle Data

result = vkAllocateMemory(
g_device,
&bufferAllocateInfo,
NULL,
&vertexBufferMemory);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to allocate buffer memory.");

// we'll set buffer contents

// temp pointer
void *mapped;
// lock memory and set the temp pointer to point
// to the memory we want to write to
result =
vkMapMemory(
// device
g_device,
// memory
vertexBufferMemory,
// offset
0,
// size
VK_WHOLE_SIZE,
// flags
0,
// ppData
&mapped);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to mapp buffer memory.");

// cast our temp pointer to a vertex type
vertex *triangle = (vertex *) mapped;

// define our triangle vertices
// facing down the z-axis
vertex v1 =
{ -1.0f, -1.0f, 0.0f, 1.0f, // position

0.0f, 1.0f, 0.0f}; // color
vertex v2 =
{ 1.0f, -1.0f, 0.0f, 1.0f,

1.0f, 0.0f, 0.0f};
vertex v3 =
{ 0.0f, 1.0f, 0.0f, 1.0f,

0.0f, 0.0f, 1.0f};

// set triangle vertices on our
// locked allocated buffer
triangle[0] = v1;

DRAFT

ve
rsi

on

0.6
81

11.1 Vertices & Buffers 87

triangle[1] = v2;
triangle[2] = v3;

// unlock the buffer so the GPU can use it
vkUnmapMemory(g_device, vertexBufferMemory);

// connect the buffer with the shader
result =
vkBindBufferMemory(
// device
g_device,
// buffer
g_vertexInputBuffer,
// memory
vertexBufferMemory,
// memoryOffset
0);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to bind buffer memory.");

}

The ‘vertexbuffer’ holds our triangle information (i.e., ver-
tices) which you’ll use in your render loop command buffer
(vkCmdBindVertexBuffers).

The triangle data is stored in an allocated buffer. This buffer
can’t be used immediately after creation as no memory has
been allocated initially (i.e., you create the buffer but it’s just
a handle - it has no size).

Different memory types:

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT = 0x00000002,
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004,
VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008,
...

You need to understand what type of memory you’re dealing
with - as it will influence how you create and update it. The
available memory is exposed to applications by the vkGet-
PhysicalDeviceMemoryProperties(). It reports one or more
memory heaps of given sizes, and one or more memory types

DRAFT

ve
rsi

on

0.6
81

88 Chapter 11. Triangle Data

with given properties. Each memory type comes from one
heap - so a typical example for a discrete GPU on a PC would
be two heaps - one for system RAM, and one for GPU RAM,
and multiple memory types from each.

The memory types have different properties. Some will be
CPU visible or not, coherent between GPU and CPU access,
cached or uncached. You can find out all of these properties
by querying from the physical device. This allows you to
choose the memory type you want. For instance, if you stage
your resources you’ll need to host them so they’re in visible
memory, but if you render to an image you’ll probably want
to host them in device memory for optimal use. However
there is also additional restriction on memory selection.

To allocate memory you call vkAllocateMemory() which
requires your VkDevice handle and a description structure.
The structure dictates which type of memory to allocate from
which heap and how much to allocate, and returns a VkDe-
viceMemory handle.

Host visible memory can be mapped for update - with vkMap-
Memory() and vkUnmapMemory(). These familiar map-
ping functions are by definition persistent, and as long as you
synchronise provide legal access to memory while in use by
the GPU.

11.2 Summary

You’ll have set-up your Vulkan data (triangle vertices) for the
render loop, which you’ll modify in later chapters. Previously,
the render-loop was only responsible for clearing the screen
- however, later you’ve now passed the vertex buffer infor-
mation along to your render pipeline so you get a triangle
on screen. After you’ve got one triangle working, it’s only
a matter of adding more triangles to display more complex

DRAFT

ve
rsi

on

0.6
81

11.3 Test Yourself 89

geometry.

11.3 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

11.3.1 Question 1

What is the name of the Vulkan function to allocate memory?

a VulkanAllocateMemory
b vkMemoryAllocate
c vkNew
d vkAllocateMemory

11.3.2 Question 2

Which function is used to set the allocated Vulkan memory
contents?

a Access memory directly
b vkMapMemory
c vkLinkMemory
d vkMemoryMap

(Q1: Answer d; Q2: Answer b;)

DRAFT

ve
rsi

on

0.6
81

12. Shaders

The programmable stages of the pipeline are controlled by
shaders. These shaders are written in a C-like shader language.
While there are a variety of shader stages, such as, vertex, hull,
domain, geometry, and pixel shader, you’ll consider only the
vertex and pixel shader here (keep it as simple as possible).

12.1 Vertex & Pixel Shaders

Developers are always trying to push the envelope for faster
graphics rendering. Today’s graphics hardware contains
shaders (e.g., vertex and pixel shaders) which can be repro-
grammed by the user. Vertex and pixel (or fragment) shaders
allow almost arbitrary computations per vertex and per pixel.
You need to use shaders to output graphics in Vulkan. Hence,

DRAFT

ve
rsi

on

0.6
81

12.1 Vertex & Pixel Shaders 91

you’ll create a simple vertex and pixel shader. Compile the
shaders using the GLSL compiler (i.e., glslangValidator.exe).
The compiled shader binaries is loaded and integrated into the
Vulkan operations (e.g., command buffer).

12.1.1 Vertex Shader

Your Vertex Shader will handle the processing of your indi-
vidual vertex data (i.e., positions and transforms - which you
created in the previous chapter). For your minimal example,
you’ll simply transform your input vertices by the projection
and view matrices. The color information will simply be
passed straight along to the pixel shader.

Below shows a minimal vertex shader listing (vert.vs):

// Vertex Shader
// shader version
#version 400

// input matrix transforms (3D) passed
// in from our program
layout (std140, set = 0, binding = 0) uniform ←↩

buffer
{
mat4 projection_matrix;
mat4 view_matrix;
mat4 model_matrix;

} UBO;

// input a position and a colour
layout(location = 0) in vec4 pos;
layout(location = 1) in vec3 color;

// output a color
layout(location = 0) out struct vertex_out
{
vec4 vColor;

} OUT;

// shader entry point
void main()
{
// combine the matrices
mat4 modelView = UBO.model_matrix * UBO.view_matrix←↩

DRAFT

ve
rsi

on

0.6
81

92 Chapter 12. Shaders

;

// transform position by matrices
gl_Position = pos * (modelView * UBO.←↩

projection_matrix);

// pass input colour to the next stage
OUT.vColor = vec4(color, 1.0);
// Or a fixed test color (RED)
// OUT.vColor = vec4(1.0, 0.0, 0.0, 1);

}// End main(..)

12.1.2 Pixel (or Fragment) Shader

Your Pixel Shader is even simpler than your Vertex Shader
- and is responsible for the ‘per-pixel’ processing. For your
example, you’ll simply pass the color information directly
forwards.

Below shows a minimal fragment (pixel) shader listing
(frag.ps):

// Fragement Shader or sometimes called the
// `pixel shader'
// shader version
#version 400

// input (from our vertex shader above)
layout (location = 0) in struct vertex_in
{
vec4 vColor;

} IN;

// final screen output color
layout (location = 0) out vec4 uFragColor;

// shader entry point
void main()
{
// pass input color along without any
// modifications (e.g., Phong lighting
// calculations could be done here)
uFragColor = IN.vColor;

}// End main(..)

DRAFT

ve
rsi

on

0.6
81

12.1 Vertex & Pixel Shaders 93

12.1.3 Compiling Shader Binaries

The shaders are text files - which you have to compile to get
the binary files. Compiling the shaders requires you to use the
GLSL compiler (i.e., glslangValidator.exe). After compiling
your shaders you’ll have the ‘vert.spv’ and ‘frag.spv’ files
which you’ll load in using the standard system libraries.

Example batch script file (.bat) to compile your shaders:

rem buildshaders.bat
@echo off

rem Uncomment the following line and set it to the ←↩
path where you have your layers *.dll and *.json

rem set VK_LAYER_PATH=c:\path\to\vulkan\layers

glslangValidator -V simple.vert
glslangValidator -V simple.frag

You are able to get a full breakdown of the shader compiler
properties (e.g., glslangValidator.exe):

12.1.4 Loading Shader Binaries

You have the compiled the vertex and pixel shader text files
(i.e., binaries ‘vert.spv’ and ‘frag.spv’ files). You’ll load them
into your system memory using the standard file input/output
functions:

// store the loaded shader modules for
// later use
VkShaderModule g_vertexShaderModule = NULL;
VkShaderModule g_fragmentShaderModule = NULL;

{
// Simple Shaders (Vertex & Fragement)
// temp variable for the code size in file
uint32_t codeSize = 0;
// temp buffer to hold our file data
char *code = new char[10000];
// handle for reading
FILE* fileHandle = 0;

DRAFT

ve
rsi

on

0.6
81

94 Chapter 12. Shaders

Figure 12.1: glslangValidator options - Options

// load our vertex shader:
fileHandle = fopen(".\\vert.spv", "rb");

// did we successfully find file
DBG_ASSERT_MSG(fileHandle != NULL,
"Failed to open shader file.");

// read the file contents
codeSize = fread(code, 1, 10000, fileHandle);
// close the file
fclose(fileHandle);
fileHandle = NULL;

// create shader module
VkShaderModuleCreateInfo vertexShaderCreationInfo = ←↩

{};
// define shader type
vertexShaderCreationInfo.sType = ←↩

VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;

DRAFT

ve
rsi

on

0.6
81

12.1 Vertex & Pixel Shaders 95

// size of shader binary in bytes
vertexShaderCreationInfo.codeSize = codeSize;
// pointer to the loaded shader binary
vertexShaderCreationInfo.pCode = (uint32_t *)code;

// create shader module and store the handle
VkResult result =
vkCreateShaderModule(g_device, &←↩

vertexShaderCreationInfo, NULL, &←↩
g_vertexShaderModule);

// check we were successfully
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create vertex shader module.");

// load our fragment shader:
fileHandle = fopen(".\\frag.spv", "rb");

// did we successfully find file
DBG_ASSERT_MSG(fileHandle != NULL,
"Failed to open shader file.");

// read the file contents
codeSize = fread(code, 1, 10000, fileHandle);
// close the file
fileHandle = NULL;

// fill the structure with the
// shader details
VkShaderModuleCreateInfo fragmentShaderCreationInfo =←↩

{};
// type of shader (module)
fragmentShaderCreationInfo.sType = ←↩

VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
// size of fragment shader binary (bytes)
fragmentShaderCreationInfo.codeSize = codeSize;
// pointer to fragment shader data
fragmentShaderCreationInfo.pCode = (uint32_t *)←↩

code;

// create fragment shader module
// and store the handle to it
result =
vkCreateShaderModule(
// device
g_device,
// pCreateInfo
&fragmentShaderCreationInfo,
// pAllocator
NULL,
// pShaderModule
&g_fragmentShaderModule);

DRAFT

ve
rsi

on

0.6
81

96 Chapter 12. Shaders

// check we were successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create vertex shader module.");

}

12.1.5 Shader Data/Parameters

After the shaders are loaded in and you’ve got handles to them.
You’ll setup your shader parameters (globals/data mapping).
You allocate memory and map/lock the memory to copy/up-
date data (like matrices and positions) which are used by your
shaders.

// Global parameters that we need to keep hold of
// to manage the shaders/update them in the render
// loop later on

// target distance from the camera location
float g_cameraZ = 10.0f;
// direction
float g_cameraZDir = -1.0f;
// three matrix pointers
float *g_projectionMatrix = NULL;
float *g_viewMatrix = NULL;
float *g_modelMatrix = NULL;
// shader memory accessors to set and
// get parameters on the shaders
VkBuffer g_buffer = NULL;
VkDeviceMemory g_memory = NULL;

// Setup and configure shader data
{
// Shader helper constants (connecting shader with ←↩

the data)
const double PI = 3.14159265359f;
const double TORAD = PI/180.0f;

// perspective projection parameters:
float fov = 45.0f;
float nearZ = 0.1f;
float farZ = 1000.0f;
float aspectRatio = g_width / (float)g_height;
float t = 1.0f / (float)tan(fov * TORAD * 0.5f)←↩

;
float nf = nearZ - farZ;

// our matrices (model-view-projection)
static

DRAFT

ve
rsi

on

0.6
81

12.1 Vertex & Pixel Shaders 97

float lprojectionMatrix[16] = {
t / aspectRatio, 0, 0, 0,
0, t, 0, 0,
0, 0, (-nearZ-farZ) / nf, (2*nearZ*farZ) / nf,
0, 0, 1, 0 };

// view matrix looking down the z-axis
static
float lviewMatrix[16] = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1 };

// simple identity matrix for our
// model transform
static
float lmodelMatrix[16] = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1 };

// animate camera (globals):
g_cameraZ = 10.0f;
g_cameraZDir = -1.0f;
lviewMatrix[11] = g_cameraZ;

// store matrices in our uniforms
g_projectionMatrix = lprojectionMatrix;
g_viewMatrix = lviewMatrix;
g_modelMatrix = lmodelMatrix;

// create our uniforms buffers:
VkBufferCreateInfo bufferCreateInfo = {};
bufferCreateInfo.sType = ←↩

VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
// size in bytes
bufferCreateInfo.size = sizeof(float) * 16 * 3;
bufferCreateInfo.usage = ←↩

VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
bufferCreateInfo.sharingMode = ←↩

VK_SHARING_MODE_EXCLUSIVE;

// create a handle for the storing
// the matrices on the gpu (only a
// handle - doesn't allocate memory)
VkResult result =
vkCreateBuffer(
g_device,
&bufferCreateInfo,
NULL,
&g_buffer);

DRAFT

ve
rsi

on

0.6
81

98 Chapter 12. Shaders

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create uniforms buffer.");

// allocate memory for buffer, we
// we create earlier
VkMemoryRequirements bufferMemoryRequirements = {};
vkGetBufferMemoryRequirements(
// device
g_device,
// buffer
g_buffer,
// pMemoryRequirements
&bufferMemoryRequirements);

VkMemoryAllocateInfo matrixAllocateInfo = {};
matrixAllocateInfo.sType = ←↩

VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
matrixAllocateInfo.allocationSize = ←↩

bufferMemoryRequirements.size;

// struct holding memory properties
VkPhysicalDeviceMemoryProperties memoryProperties;

vkGetPhysicalDeviceMemoryProperties(
// physicalDevice
g_physicalDevice,
// pMemoryProperties
&memoryProperties);

for(uint32_t i = 0; i <VK_MAX_MEMORY_TYPES; ++i)
{
VkMemoryType memoryType = memoryProperties.←↩

memoryTypes[i];
// is this the memory type we are looking for?
if((memoryType.propertyFlags & ←↩

VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))
{
// save location

matrixAllocateInfo.memoryTypeIndex = i;
// exit loop
}

}// End for i

result =
vkAllocateMemory(
g_device,
&matrixAllocateInfo,
NULL,
&g_memory);

// check if successful

DRAFT

ve
rsi

on

0.6
81

12.1 Vertex & Pixel Shaders 99

DBG_ASSERT_VULKAN_MSG(result,
"Failed to allocate uniforms buffer memory.");

result =
vkBindBufferMemory(
g_device,
g_buffer,
g_memory,
0);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to bind uniforms buffer memory.");

// set buffer content
// (lock the memory for writing)
void *matrixMapped = NULL;

result = vkMapMemory(
g_device,
g_memory,
0,
VK_WHOLE_SIZE,
0,
&matrixMapped);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to mapp uniform buffer memory.");

// copy the local (CPU) matrix values
// to the buffer memory on the gpu
// matrix is 16 floats
memcpy(((float *)matrixMapped + 0, // dst

&lprojectionMatrix[0], // src
sizeof(lprojectionMatrix)); // size

memcpy(((float *)matrixMapped + 16), // dst
&lviewMatrix[0], // src
sizeof(lviewMatrix)); // size

memcpy(((float *)matrixMapped + 32), // dst
&lmodelMatrix[0], // src
sizeof(lmodelMatrix)); // size

// (unlock memory)
vkUnmapMemory(g_device, g_memory);
}

DRAFT

ve
rsi

on

0.6
81

100 Chapter 12. Shaders

12.2 Summary

You should have compiled and loaded your shaders into
Vulkan. However, your shaders are not yet integrated into
your render pipeline (i.e., you haven’t connected everything
together - the data and drawing). You’ll do that in the next
couple of chapters.

12.3 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

12.3.1 Question 1

What is the function name to create a shader module?

a ShaderModuleNew
b CreateModule
c vkCreateShaderModule
d vkShaderModule

12.3.2 Question 2

Which function is used to bind the shader memory for config-
uration?

a vkMapBufferMemory
b vkBindBufferMemory
c BindBufferMemory
d vkBindMemory

DRAFT

ve
rsi

on

0.6
81

12.3 Test Yourself 101

(Q1: Answer c; Q2: Answer b;)

DRAFT

ve
rsi

on

0.6
81

13. Descriptors & Binding

13.0.3 Descriptors & Binding

Traditional graphics API (prior to Vulkan) would allow each
shader stage to have its own namespace, so pixel shader tex-
ture binding 0 is not vertex shader texture binding 0. Each
resource type is namespaced apart, so constant buffer binding
0 is definitely not the same as texture binding 0. Resources
are individually bound and unbound to slots (or at best in
contiguous batches). In Vulkan, the base binding unit is a de-
scriptor. A descriptor is an opaque representation that stores
‘one bind’. For example, this could be an image, a sampler, or
a uniform/constant buffer. It is even allowed to be an array -
so you can have an array of images that can be different sizes,
as long as they are all 2D floating point images.

Descriptors aren’t bound individually, they are bound in

DRAFT

ve
rsi

on

0.6
81

103

blocks in a VkDescriptorSet which each have a particular
VkDescriptorSetLayout. The VkDescriptorSetLayout de-
scribes the types of the individual bindings in each VkDe-
scriptorSet.

The easiest way to think about the concept, is to consider
VkDescriptorSetLayout as being like a C struct type - it
describes some members, each member having an opaque type
(constant buffer, load/store image). The VkDescriptorSet is
a specific instance of that type - and each member in the
VkDescriptorSet is a binding you can update with whichever
resource you want it to contain.

This is roughly how you create the objects too. You pass a list
of the types, array sizes and bindings to Vulkan to create a
VkDescriptorSetLayout, then you can allocate VkDescrip-
torSets with that layout from a VkDescriptorPool. The pool
acts the same way as VkCommandPool, to let you allocate
descriptors on different threads more efficiently by having a
pool per thread.

VkDescriptorSet g_descriptorSet = NULL;
VkDescriptorSetLayout g_setLayout = NULL;

{
// Define and create our descriptors:
VkDescriptorSetLayoutBinding bindings[1];

// uniform buffer for our matrices:
bindings[0].binding = 0;
bindings[0].descriptorType = ←↩

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
bindings[0].descriptorCount = 1;
bindings[0].stageFlags = ←↩

VK_SHADER_STAGE_VERTEX_BIT;
bindings[0].pImmutableSamplers = NULL;

VkDescriptorSetLayoutCreateInfo setLayoutCreateInfo =←↩
{};

setLayoutCreateInfo.sType = ←↩
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO←↩
;

setLayoutCreateInfo.bindingCount = 1;
setLayoutCreateInfo.pBindings = bindings;

DRAFT

ve
rsi

on

0.6
81

104 Chapter 13. Descriptors & Binding

VkResult result =
vkCreateDescriptorSetLayout(
// device
g_device,
// pCreateInfo
&setLayoutCreateInfo,
// pAllocator
NULL,
// pSetLayout
&g_setLayout);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create DescriptorSetLayout.");

// decriptor pool creation:
VkDescriptorPoolSize uniformBufferPoolSize[1];
uniformBufferPoolSize[0].type = ←↩

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
uniformBufferPoolSize[0].descriptorCount = 1;

VkDescriptorPoolCreateInfo poolCreateInfo = {};
poolCreateInfo.sType = ←↩

VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolCreateInfo.maxSets = 1;
poolCreateInfo.poolSizeCount = 1;
poolCreateInfo.pPoolSizes = uniformBufferPoolSize;

VkDescriptorPool descriptorPool;
result = vkCreateDescriptorPool(
// device
g_device,
// pCreateInfo
&poolCreateInfo,
// pAllocator
NULL,
// pDescriptorPool
&descriptorPool);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create descriptor pool.");

// allocate our descriptor from the pool:
VkDescriptorSetAllocateInfo dsai = {};
dsai.sType = ←↩

VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
dsai.descriptorPool = descriptorPool;
dsai.descriptorSetCount = 1;
dsai.pSetLayouts = &g_setLayout;

result =
vkAllocateDescriptorSets(

DRAFT

ve
rsi

on

0.6
81

105

// device
g_device,
// pAllocateInfo
&dsai,
// pDescriptorSets
&g_descriptorSet);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to allocate descriptor sets.");

// When a set is allocated all values are undefined
// and all descriptors are uninitialized. We must
// init all statically used bindings:
VkDescriptorBufferInfo dbi = {};
dbi.buffer = g_buffer;
dbi.offset = 0;
dbi.range = VK_WHOLE_SIZE;

VkWriteDescriptorSet wd = {};
wd.sType = ←↩

VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
wd.dstSet = g_descriptorSet;
wd.dstBinding = 0;
wd.dstArrayElement = 0;
wd.descriptorCount = 1;
wd.descriptorType = ←↩

VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
wd.pImageInfo = NULL;
wd.pBufferInfo = &dbi;
wd.pTexelBufferView = NULL;

vkUpdateDescriptorSets(
// device
g_device,
// descriptorWriteCount
1,
// pDescriptorWrites
&wd,
// descriptorCopyCount
0,
// pDescriptorCopies
NULL);

}

DRAFT

ve
rsi

on

0.6
81

106 Chapter 13. Descriptors & Binding

13.1 Summary

You should have setup your ‘descriptors’, which are structures
that tell the shaders about the resources (i.e., data). In the final
stage, you need to connect everything together (i.e., shaders,
data, and a pipeline). The pipeline hasn’t been discussed yet -
this is done in the next chapter.

13.2 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

13.2.1 Question 1

What function updates the descriptor?

a VulkanUpdateDescriptorSets
b vkDescriptorSets
c UpdateDescriptorSets
d vkUpdateDescriptorSets

13.2.2 Question 2

The base binding unit, in Vulkan, is a descriptor, and a de-
scriptor is an opaque representation that stores ‘one bind’.

a true
b false

DRAFT

ve
rsi

on

0.6
81

13.2 Test Yourself 107

(Q1: Answer d; Q2: Answer a;)

DRAFT

ve
rsi

on

0.6
81

14. Pipeline

14.1 Connecting Everything

The pipeline is your final stage to getting your triangle on
screen. All the previous chapters have been building up to this.
Importantly, the this sample does not include depth buffering,
however, this can be added in later. What you’ll find is, as
your scene becomes increasingly complex (i.e., the numbers
of triangles and textures increases) - the extra work you’ve
had to do to get started with Vulkan will only then become
more useful.

Below shows the listing for the pipeline creation (also its
connection with the other graphical elements from previous
chapters):

// store pipeline handles (accessors for

DRAFT

ve
rsi

on

0.6
81

14.1 Connecting Everything 109

// using the pipeline for drawing)
VkPipeline g_pipeline = NULL;
VkPipelineLayout g_pipelineLayout = NULL;

// Graphics Pipeline Setup:
{
// define the structure for the
// pipeline properties (layout)
VkPipelineLayoutCreateInfo layoutCreateInfo = {};
layoutCreateInfo.sType = ←↩

VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
layoutCreateInfo.setLayoutCount = 1;
layoutCreateInfo.pSetLayouts = &←↩

g_setLayout;
layoutCreateInfo.pushConstantRangeCount = 0;
layoutCreateInfo.pPushConstantRanges = NULL;

// create pipeline layout
VkResult result =
vkCreatePipelineLayout(
// device
g_device,
// pCreateInfo
&layoutCreateInfo,
// pAllocator
NULL,
// pPipelineLayout
&g_pipelineLayout);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create pipeline layout.");

// setup shader stages in the pipeline:
VkPipelineShaderStageCreateInfo shaderStageCreateInfo←↩

[2] = {};
shaderStageCreateInfo[0].sType = ←↩

VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO←↩
;

shaderStageCreateInfo[0].stage = ←↩
VK_SHADER_STAGE_VERTEX_BIT;

shaderStageCreateInfo[0].module = ←↩
g_vertexShaderModule;

// shader entry point function name
shaderStageCreateInfo[0].pName = "main";
shaderStageCreateInfo[0].pSpecializationInfo = NULL;

shaderStageCreateInfo[1].sType = ←↩
VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO←↩
;

shaderStageCreateInfo[1].stage = ←↩
VK_SHADER_STAGE_FRAGMENT_BIT;

DRAFT

ve
rsi

on

0.6
81

110 Chapter 14. Pipeline

shaderStageCreateInfo[1].module = ←↩
g_fragmentShaderModule;

// shader entry point function name
shaderStageCreateInfo[1].pName = "main";
shaderStageCreateInfo[1].pSpecializationInfo = NULL;

// vertex input configuration:
VkVertexInputBindingDescription ←↩

vertexBindingDescription = {};
vertexBindingDescription.binding = 0;
vertexBindingDescription.stride = sizeof(vertex);
vertexBindingDescription.inputRate = ←↩

VK_VERTEX_INPUT_RATE_VERTEX;

VkVertexInputAttributeDescription ←↩
vertexAttributeDescritpion[2];

// position:
vertexAttributeDescritpion[0].location = 0;
vertexAttributeDescritpion[0].binding = 0;
vertexAttributeDescritpion[0].format = ←↩

VK_FORMAT_R32G32B32A32_SFLOAT;
vertexAttributeDescritpion[0].offset = 0;

// colors:
vertexAttributeDescritpion[1].location = 1;
vertexAttributeDescritpion[1].binding = 0;
vertexAttributeDescritpion[1].format = ←↩

VK_FORMAT_R32G32B32_SFLOAT;
vertexAttributeDescritpion[1].offset = 4 * sizeof(←↩

float);

VkPipelineVertexInputStateCreateInfo ←↩
vertexInputStateCreateInfo = {};

vertexInputStateCreateInfo.sType = ←↩
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO←↩
;

vertexInputStateCreateInfo.←↩
vertexBindingDescriptionCount = 1;

// attribute indexing is a function of the vertex ←↩
index

vertexInputStateCreateInfo.pVertexBindingDescriptions←↩
= &vertexBindingDescription;

vertexInputStateCreateInfo.←↩
vertexAttributeDescriptionCount = 2;

vertexInputStateCreateInfo.←↩
pVertexAttributeDescriptions = ←↩
vertexAttributeDescritpion;

// vertex topology config:
VkPipelineInputAssemblyStateCreateInfo ←↩

inputAssemblyStateCreateInfo = {};
inputAssemblyStateCreateInfo.sType = ←↩

VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO←↩

DRAFT

ve
rsi

on

0.6
81

14.1 Connecting Everything 111

;
inputAssemblyStateCreateInfo.topology = ←↩

VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
inputAssemblyStateCreateInfo.primitiveRestartEnable =←↩

VK_FALSE;

// viewport config:
VkViewport viewport = {};
viewport.x = 0;
viewport.y = 0;
viewport.width = (float)g_width;
viewport.height = (float)g_height;
viewport.minDepth = 0;
viewport.maxDepth = 1;

VkRect2D scissors = {};
VkOffset2D k = {0,0};
VkExtent2D m = {g_width,g_height };
scissors.offset = k;
scissors.extent = m;

VkPipelineViewportStateCreateInfo viewportState = {};
viewportState.sType =
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO←↩

;
viewportState.viewportCount = 1;
viewportState.pViewports = &viewport;
viewportState.scissorCount = 1;
viewportState.pScissors = &scissors;

// rasterization config:
VkPipelineRasterizationStateCreateInfo ←↩

rasterizationState = {};
// manditory structure type
rasterizationState.sType =
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO←↩

;
rasterizationState.depthClampEnable = VK_FALSE;
rasterizationState.rasterizerDiscardEnable= VK_FALSE;
rasterizationState.polygonMode = ←↩

VK_POLYGON_MODE_FILL;
rasterizationState.cullMode = ←↩

VK_CULL_MODE_NONE;
rasterizationState.frontFace = ←↩

VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizationState.depthBiasEnable = VK_FALSE;
rasterizationState.depthBiasConstantFactor= 0;
rasterizationState.depthBiasClamp = 0;
rasterizationState.depthBiasSlopeFactor = 0;
rasterizationState.lineWidth = 1;

// sampling config:
VkPipelineMultisampleStateCreateInfo multisampleState←↩

= {};

DRAFT

ve
rsi

on

0.6
81

112 Chapter 14. Pipeline

multisampleState.sType =
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO←↩

;
multisampleState.rasterizationSamples = ←↩

VK_SAMPLE_COUNT_1_BIT;
multisampleState.sampleShadingEnable = VK_FALSE;
multisampleState.minSampleShading = 0;
multisampleState.pSampleMask = NULL;
multisampleState.alphaToCoverageEnable = VK_FALSE;
multisampleState.alphaToOneEnable = VK_FALSE;

// color blend config: (Actually off for tutorial)
VkPipelineColorBlendAttachmentState ←↩

colorBlendAttachmentState = {};
colorBlendAttachmentState.blendEnable = ←↩

VK_FALSE;
colorBlendAttachmentState.srcColorBlendFactor = ←↩

VK_BLEND_FACTOR_SRC_COLOR;
colorBlendAttachmentState.dstColorBlendFactor = ←↩

VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR;
colorBlendAttachmentState.colorBlendOp = ←↩

VK_BLEND_OP_ADD;
colorBlendAttachmentState.srcAlphaBlendFactor = ←↩

VK_BLEND_FACTOR_ZERO;
colorBlendAttachmentState.dstAlphaBlendFactor = ←↩

VK_BLEND_FACTOR_ZERO;
colorBlendAttachmentState.alphaBlendOp = ←↩

VK_BLEND_OP_ADD;
colorBlendAttachmentState.colorWriteMask = 0xf;

VkPipelineColorBlendStateCreateInfo colorBlendState =←↩
{};

colorBlendState.sType =
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO←↩

;
colorBlendState.logicOpEnable = VK_FALSE;
colorBlendState.logicOp = VK_LOGIC_OP_CLEAR←↩

;
colorBlendState.attachmentCount = 1;
colorBlendState.pAttachments = &←↩

colorBlendAttachmentState;
colorBlendState.blendConstants[0] = 0.0;
colorBlendState.blendConstants[1] = 0.0;
colorBlendState.blendConstants[2] = 0.0;
colorBlendState.blendConstants[3] = 0.0;

// configure dynamic state:
VkDynamicState dynamicState[2] = { ←↩

VK_DYNAMIC_STATE_VIEWPORT, ←↩
VK_DYNAMIC_STATE_SCISSOR };

VkPipelineDynamicStateCreateInfo ←↩
dynamicStateCreateInfo = {};

dynamicStateCreateInfo.sType =

DRAFT

ve
rsi

on

0.6
81

14.1 Connecting Everything 113

VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicStateCreateInfo.dynamicStateCount = 2;
dynamicStateCreateInfo.pDynamicStates = ←↩

dynamicState;

// and finally, pipeline config and creation:
VkGraphicsPipelineCreateInfo pipelineCreateInfo = {};
pipelineCreateInfo.sType = ←↩

VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineCreateInfo.stageCount = 2;
pipelineCreateInfo.pStages = ←↩

shaderStageCreateInfo;
pipelineCreateInfo.pVertexInputState = &←↩

vertexInputStateCreateInfo;
pipelineCreateInfo.pInputAssemblyState = &←↩

inputAssemblyStateCreateInfo;
pipelineCreateInfo.pTessellationState = NULL;
pipelineCreateInfo.pViewportState = &←↩

viewportState;
pipelineCreateInfo.pRasterizationState = &←↩

rasterizationState;
pipelineCreateInfo.pMultisampleState = &←↩

multisampleState;
pipelineCreateInfo.pDepthStencilState = NULL;
pipelineCreateInfo.pColorBlendState = &←↩

colorBlendState;
pipelineCreateInfo.pDynamicState = &←↩

dynamicStateCreateInfo;
pipelineCreateInfo.layout = ←↩

g_pipelineLayout;
pipelineCreateInfo.renderPass = g_renderPass;
pipelineCreateInfo.subpass = 0;
pipelineCreateInfo.basePipelineHandle = NULL;
pipelineCreateInfo.basePipelineIndex = 0;

result =
vkCreateGraphicsPipelines(
// device
g_device,
// pipelineCache
VK_NULL_HANDLE,
// createInfoCount
1,
// pCreateInfos
&pipelineCreateInfo,
// pAllocator
NULL,
// pPipelines
&g_pipeline);

// check if successful
DBG_ASSERT_VULKAN_MSG(result,
"Failed to create graphics pipeline.");

DRAFT

ve
rsi

on

0.6
81

114 Chapter 14. Pipeline

}

14.1.1 RenderLoop (Revisited)

You need to add some additional commands to your Render-
Loop so your triangle will draw. Previously, you cleared the
screen and presented the buffer. Now you need to include
the draw commands to push your vertices and data along the
pipeline (i.e., the shader parameters, such as, the matrices).

We show the updated draw loop below:

void RenderVulkan()
{
// Oscillates the triangle backwards and
// forwards (towards and away from the
// camera)
if (g_cameraZ <= 1)
{
g_cameraZ = 1;
g_cameraZDir = 1;

}
else if (g_cameraZ >= 10)
{
g_cameraZ = 10;
g_cameraZDir = -1;

}

// update view (camera) distance
g_cameraZ += g_cameraZDir * 0.01f;

// update camera matrix (move around)
g_viewMatrix[11] = g_cameraZ;

// update shader uniforms:

// temp pointer to the mapped memory
void *matrixMapped;

// mapped the GPU memory so we can access it
// and update our variables
vkMapMemory(g_device, // device

g_memory, // memory
0, // offset
VK_WHOLE_SIZE, // size
0, // flags

DRAFT

ve
rsi

on

0.6
81

14.1 Connecting Everything 115

&matrixMapped);// ppData

// copy our updated matrix data from CPU to GPU
// matrix is 16 floats
memcpy(((float *)matrixMapped + 0),

g_projectionMatrix,
sizeof(float) * 16);

memcpy(((float *)matrixMapped + 16),
g_viewMatrix,
sizeof(float) * 16);

memcpy(((float *)matrixMapped + 32),
g_modelMatrix,
sizeof(float) * 16);

VkMappedMemoryRange memoryRange = {};
memoryRange.sType = ←↩

VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
memoryRange.memory = g_memory;
memoryRange.offset = 0;
memoryRange.size = VK_WHOLE_SIZE;

// ensure the memory is updated
// (not cached or wait for gpu)
vkFlushMappedMemoryRanges(g_device, 1, &memoryRange ←↩

);

// finished updating memory so unmap
vkUnmapMemory(g_device, g_memory);

// temp index to the image we're gonig to write to
uint32_t nextImageIdx;

// get the back buffer image id from the
// swap-chain
vkAcquireNextImageKHR(
// device
g_device,
// swapchain
g_swapChain,
// timeout
UINT64_MAX,
// semaphore
VK_NULL_HANDLE,
// fence
VK_NULL_HANDLE,
// pImageIndex
&nextImageIdx);

// configure buffer information
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType =
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;

DRAFT

ve
rsi

on

0.6
81

116 Chapter 14. Pipeline

beginInfo.flags =
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

// start recording buffer commands
vkBeginCommandBuffer(g_drawCmdBuffer, &beginInfo);

// barrier for reading from uniform buffer after all
// writing is done:
VkMemoryBarrier uniformMemoryBarrier = {};
uniformMemoryBarrier.sType = ←↩

VK_STRUCTURE_TYPE_MEMORY_BARRIER;
uniformMemoryBarrier.srcAccessMask = ←↩

VK_ACCESS_HOST_WRITE_BIT;
uniformMemoryBarrier.dstAccessMask = ←↩

VK_ACCESS_UNIFORM_READ_BIT;

vkCmdPipelineBarrier(
g_drawCmdBuffer, // commandBuffer
VK_PIPELINE_STAGE_HOST_BIT, // srcStageMask
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,// dstStageMask
0, // dependencyFlags
1, &uniformMemoryBarrier, // memoryBarrierCount
0, NULL, // bufferMemoryBarrier
0, NULL); // imageMemoryBarrier

// change image layout
// structure for specifying the
// the image memory barrier.
VkImageMemoryBarrier layoutTransitionBarrier = {};
layoutTransitionBarrier.sType =
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

layoutTransitionBarrier.srcAccessMask =
VK_ACCESS_MEMORY_READ_BIT;

layoutTransitionBarrier.dstAccessMask =
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;

layoutTransitionBarrier.oldLayout =
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

layoutTransitionBarrier.newLayout =
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

layoutTransitionBarrier.srcQueueFamilyIndex =
VK_QUEUE_FAMILY_IGNORED;

layoutTransitionBarrier.dstQueueFamilyIndex =
VK_QUEUE_FAMILY_IGNORED;

layoutTransitionBarrier.image =
g_presentImages[nextImageIdx];

VkImageSubresourceRange resourceRange =
{ VK_IMAGE_ASPECT_COLOR_BIT, // aspectMask
0, // baseMipLevel
1, // levelCount
0, // baseArrayLayer

DRAFT

ve
rsi

on

0.6
81

14.1 Connecting Everything 117

1 }; // layerCount

layoutTransitionBarrier.subresourceRange = ←↩
resourceRange;

vkCmdPipelineBarrier(
g_drawCmdBuffer,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
0,
0, NULL,
0, NULL,
1, &layoutTransitionBarrier);

// activate render pass:
VkClearValue clearValue[] = {

{ 1.0f, 1.0f, 1.0f, 1.0f }, //color
{ 1.0, 0.0 } }; //depth stencil

VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType = ←↩

VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.renderPass = g_renderPass;
renderPassBeginInfo.framebuffer = g_frameBuffers[←↩

nextImageIdx];
VkOffset2D a = {0, 0};
VkExtent2D b = {g_width, g_height};
VkRect2D c = {a,b};
renderPassBeginInfo.renderArea = c;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValue;

// start render commands
vkCmdBeginRenderPass(
g_drawCmdBuffer, // commandBuffer
&renderPassBeginInfo, // pipelineBindPoint
VK_SUBPASS_CONTENTS_INLINE);// pipeline

{
// bind the graphics pipeline to the command buffer.
// Any vkDraw command afterwards is affected by this
// pipeline.
vkCmdBindPipeline(
// commandBuffer
g_drawCmdBuffer,
// VkPipelineBindPoint
VK_PIPELINE_BIND_POINT_GRAPHICS,
// VkPipeline
g_pipeline);

// take care of dynamic state:
VkViewport viewport = { 0, 0, (float)g_width, (float)←↩

g_height, 0, 1 };

DRAFT

ve
rsi

on

0.6
81

118 Chapter 14. Pipeline

vkCmdSetViewport(g_drawCmdBuffer, 0, 1, &viewport);

// scissor test determines if a fragment's
// framebuffer coordinates lie within the
// scissor rectangle corresponding to the viewport
VkRect2D scissor = { 0, 0, g_width, g_height };
vkCmdSetScissor(
g_drawCmdBuffer, // commandBuffer
0, // firstScissor
1, // scissorCount
&scissor); // pScissors

// bind our shader parameters:
vkCmdBindDescriptorSets(
g_drawCmdBuffer, // commandBuffer
// pipelineBindPoint
VK_PIPELINE_BIND_POINT_GRAPHICS,
g_pipelineLayout, // layout
0, // firstSet
1, &g_descriptorSet, // descriptorSet
0, NULL); // dynamicOffset

// render the triangle:
VkDeviceSize offsets = { 0 };
vkCmdBindVertexBuffers(
g_drawCmdBuffer, // commandBuffer
0, // firstBinding
1, // bindingCount
&g_vertexInputBuffer,// pBuffers
&offsets); // pOffsets

// command to draw our triangle
vkCmdDraw(g_drawCmdBuffer, // commandBuffer

3, // vertexCount
1, // instanceCount
0, // firstVertex
0); // firstInstance

}
// stop render commands
vkCmdEndRenderPass(g_drawCmdBuffer);

// change layout back to ←↩
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR

VkImageMemoryBarrier prePresentBarrier = {};
prePresentBarrier.sType =
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

prePresentBarrier.srcAccessMask =
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;

prePresentBarrier.dstAccessMask =
VK_ACCESS_MEMORY_READ_BIT;

DRAFT

ve
rsi

on

0.6
81

14.1 Connecting Everything 119

prePresentBarrier.oldLayout =
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

prePresentBarrier.newLayout =
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // *** change back←↩

prePresentBarrier.srcQueueFamilyIndex =
VK_QUEUE_FAMILY_IGNORED;

prePresentBarrier.dstQueueFamilyIndex =
VK_QUEUE_FAMILY_IGNORED;

VkImageSubresourceRange d = {←↩
VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};

prePresentBarrier.subresourceRange = d;
prePresentBarrier.image = g_presentImages[←↩

nextImageIdx];

vkCmdPipelineBarrier(
// commandBuffer
g_drawCmdBuffer,
// srcStageMask
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
// dstStageMask
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
0, // dependencyFlags
0, NULL, // memoryBarrier
0, NULL, // bufferMemoryBarrier
1, &prePresentBarrier); // imageMemoryBarrier

// finished recording commands
vkEndCommandBuffer(g_drawCmdBuffer);

// present to the display:
VkFence renderFence;
VkFenceCreateInfo fenceCreateInfo = {};
fenceCreateInfo.sType = ←↩

VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;

vkCreateFence(
// device
g_device,
// pCreateInfo
&fenceCreateInfo,
// pAllocator
NULL,
// pFence
&renderFence);

VkPipelineStageFlags waitStageMash =
{ VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT };

// struct for information about
// the batch of work.
VkSubmitInfo submitInfo = {};

DRAFT

ve
rsi

on

0.6
81

120 Chapter 14. Pipeline

submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitSemaphores = VK_NULL_HANDLE;
submitInfo.pWaitDstStageMask = &waitStageMash;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &g_drawCmdBuffer;
submitInfo.signalSemaphoreCount = 0;
submitInfo.pSignalSemaphores = VK_NULL_HANDLE;

// submit the command queue (notice, we
// also pass the fence, to let us know when
// the gpu has finished)
vkQueueSubmit(
// queue
g_presentQueue,
// submitCount
1,
// pSubmits
&submitInfo,
// fence
renderFence);

// wait until the GPU has finished processing
// the commands
vkWaitForFences(g_device, 1, &renderFence, VK_TRUE, ←↩

UINT64_MAX);
vkDestroyFence(g_device, renderFence, NULL);

// structure for specifying the
// parameters of the image presentation.
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = ←↩

VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.pNext = NULL;
presentInfo.waitSemaphoreCount = 0;
presentInfo.pWaitSemaphores = VK_NULL_HANDLE;
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = &g_swapChain;
presentInfo.pImageIndices = &nextImageIdx;
presentInfo.pResults = NULL;

vkQueuePresentKHR(g_presentQueue, &presentInfo);
}// End VulkanRender(..)

DRAFT

ve
rsi

on

0.6
81

14.2 Putting it all Together (Simple Triangle) 121

14.2 Putting it all Together (Simple Triangle)

The completed example (i.e., everything from creating a de-
vice through to swap-chains and framebuffers) is a consid-
erable amount of code - while it may seem overwhelming
initially, as you come to understand and appreciate each of the
different parts of the implementation - you’ll see the advan-
tages and its elegance. Compared to previous OpenGL and
DirectX samples, the minimal Vulkan demo opens up a door-
way to future hardware customizations that were not possible
previously - helping to reduce performance bottlenecks.

Figure 14.1: Window Triangle - Drawing a simple color
triangle on screen.

14.2.1 Summary (What Next?)

This book has only scratched the surface of the Vulkan API
- giving you (the reader) a taste. You are now ready to start
writing and editing larger projects. As the examples/snippets
in this text, were written to show the underlying raw Vulkan

DRAFT

ve
rsi

on

0.6
81

122 Chapter 14. Pipeline

API (minimalistic view). Once you start becoming more
comfortable with the Vulkan API (through lots of trial and
error - practising and experimenting) you’ll have no problem
with larger more intricate programs (you’ll also have a feel for
what wrapper classes are doing internally - since it’s common
practice to encapsulate a lot of the Vulkan API in classes to
make it more manageable). Example tasks/exercises to get
you started:

• Module programming (wrapper classes/structures/man-
age render engine)
• Textured geometry
• Batched rendering (switching commands)
• Profiling (analysing performance bottlenecks)
• Win32/Linux/Android builds
• Complex shaders (e.g., shadows, post processing, de-

ferred rendering, ..)

14.3 Test Yourself

Here are some multiple-choice questions to help you identify
your baseline knowledge of the material. Answers appear at
the end of the test.

14.3.1 Question 1

What command function do you use for drawing geometry?

a vkCmdDraw
b vkCommandDraw
c VulkanCmdDraw
d CmdDraw

DRAFT

ve
rsi

on

0.6
81

14.3 Test Yourself 123

14.3.2 Question 2

Which function presents the pipeline in the render loop?

a vkQueuePresentPipeline
b QueuePresent
c vkQueuePresentKHR
d vkQueuePresentFlush

(Q1: Answer a; Q2: Answer c;)

DRAFT

ve
rsi

on

0.6
81

Index

_SURFACE_CREATE_INFO_KHR, 44
__stdcall, 33

CALLBACK, 33
CreateWindowEx, 34
CS_OWNDC, 33

DispatchMessage(), 35

flags, 51

GetPhysicalProperties, 50

HWND, 34, 37

NULL, 25, 27, 39, 44, 54

pNext, 27, 51

queueCount, 54

ShowWindow(..), 33
sType, 27, 38, 39, 44, 51, 82
swap-chain, 58

TranslateMessage(), 35

DRAFT

ve
rsi

on

0.6
81

INDEX 125

Vk, 38
vk, 38
VK_DBG_SUCCESS, 39
VK_MAKE_VERSION(..), 50
VK_OK, 39
VK_PRESENT_MODE_FIFO_KHR, 60
VK_PRESENT_MODE_FIFO_RELAXED_KHR, 60
VK_PRESENT_MODE_IMMEDIATE_KHR, 60
VK_PRESENT_MODE_MAILBOX_KHR, 60, 64
VK_QUEUE_COMPUTE_BIT, 66
VK_QUEUE_GRAPHICS_BIT, 66
VK_QUEUE_SPARSE_BINDING_BIT, 66
VK_QUEUE_TRANSFER_BIT, 66
VK_STRUCTURE_TYPE_APPLICATION_INFO, 39
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, 39
VK_STRUCTURE_TYPE_TEST, 39, 44
VK_STRUCTURE_TYPE_WIN32, 44
VK_SUCCESS, 28, 38, 39
VK_UNDEFINED, 39, 44
vkAllocateMemory(), 88
vkAllocationCallback, 25
vkApplicationInfo, 38
vkBeginCommandBuffer, 82
vkCmdBindVertexBuffers, 87
VkCommandBuffer, 59, 68
VkCommandPool, 103
vkCreateInstance, 28
vkCreateInstance(..), 38
VkDescriptorPool, 103
VkDescriptorSet, 103
VkDescriptorSetLayout, 103
VkDescriptorSets, 103
vkDestroyInstance, 28
VkDevice, 45, 46, 51, 52, 55, 88
VkDeviceCreateInfo, 52, 54
VkDeviceMemory, 88
vkEnumerateInstanceExtensionProperties, 41
vkEnumeratePhysicalDevices, 46, 66
VkFramebuffer, 72, 75
VkGetDeviceName, 50
vkGetPhysicalDeviceMemoryProperties(), 87
vkGetPhysicalDeviceProperties, 47, 48, 50
vkGetPhysicalDeviceQueueFamilyProperties, 66
VkImage, 61
VkImageView, 63, 75
VkImageViewCreateInfo, 63
VkInstance, 45, 54
vkInstance, 25
vkInstanceCreateInfo, 25, 39
vkMapMemory(), 88
VkPhysicalDevice, 45, 48, 49, 51, 54, 58
vkPhysicalDevice, 46
VkPhysicalDeviceProperties, 49
vkPhysicalDeviceProperties, 47
VkQueueCreateInfo, 52
VkQueueFamilyProperties, 54
vkQueueFamilyProperties, 66

DRAFT

ve
rsi

on

0.6
81

126 INDEX

VkSubmitInfo, 82
VkSurfaceKHR, 58
VkSwapchainCreateInfoKHR, 59
vkUnmapMemory(), 88
VkWin32SurfaceCreateInfoKHR, 44
vulkan-1, 22
vulkan-1.dll, 22
VulkanGetPropertiesForDevice, 50

WINAPI, 33
WM_PAINT, 37
wMsgFilterMax, 36
wMsgFilterMin, 36
WNDCLASSEX, 33
WS_VISIBLE, 33

	Introduction
	What is Vulkan?
	What is different about Vulkan?
	With great power comes great ...

	Should you bother learning Vulkan?
	Do any games support Vulkan yet?
	What this book is NOT
	Summary
	Test Yourself
	Question 1
	Question 2
	Question 3
	Question 4

	Getting Started
	Setup
	Installing Drivers
	LunarG Vulkan SDK
	Practical Roadmap
	Summary

	Initializing Vulkan
	Your First Vulkan Program
	Debugging

	Windows (Win32)
	WinMain
	Window Creation
	Message Processing

	Summary
	Review
	Test Yourself
	Question 1
	Question 2
	Question 3
	Question 4

	Surfaces
	Surfaces (Screen & Format)
	Summary
	Test Yourself
	Question 1
	Question 2
	Question 3

	Devices Enumeration
	Flexibility of Vulkan
	Summary
	Test Yourself
	Question 1
	Question 2
	Question 3

	Device Creation
	Devices
	Summary
	Test Yourself
	Question 1
	Question 2

	Swap-Chains
	Buffering & Synchronization
	Swap-chain

	Creating Images
	Image Views
	Summary
	Test Yourself
	Question 1
	Question 2
	Question 3

	Device Queues
	Commands
	Summary
	Test Yourself
	Question 1
	Question 2

	Framebuffer
	Framebuffer
	Summary
	Test Yourself
	Question 1
	Question 2

	Displaying (Presenting)
	Presenting
	Summary
	Test Yourself
	Question 1
	Question 2

	Triangle Data
	Vertices & Buffers
	Summary
	Test Yourself
	Question 1
	Question 2

	Shaders
	Vertex & Pixel Shaders
	Vertex Shader
	Pixel (or Fragment) Shader
	Compiling Shader Binaries
	Loading Shader Binaries
	Shader Data/Parameters

	Summary
	Test Yourself
	Question 1
	Question 2

	Descriptors & Binding
	Descriptors & Binding
	Summary
	Test Yourself
	Question 1
	Question 2

	Pipeline
	Connecting Everything
	RenderLoop (Revisited)

	Putting it all Together (Simple Triangle)
	Summary (What Next?)

	Test Yourself
	Question 1
	Question 2

