
Workshop Series, March 2014
The Path To Working Smarter Not Harder

Workshop Series: Newtonian Mechanics
Benjamin Kenwright1*

Abstract
Newtonian mechanics rely upon Newton’s laws of motion concerning the relations between forces acting and motions
occurring. We explain and review Newtonian mechanics in terms of their relevance to real-time physics-based simulations,
including, the basic structure of a physics simulator and the fundamental elements of unconstrained motion.
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Figure 1. Sir Isaac Newton - Newton was born in a modest
manor house in 1642 where he made many of his most
important discoveries about light and gravity. Newton himself
often told the story of how he was inspired to formulate his
theory of gravitation by watching an apple fall from a tree.
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Introduction
Physics The topic of this set of practicals is simulating the
physical behaviour of objects through the development of var-
ious physics systems. You should possess the understanding
of how to draw objects in complex scenes on the screen. We
show you how to make those objects move and interact based
on physical properties (e.g., mass and velocity).

Essentials The topic of this set of practicals is simulating
the physical behaviour of objects in virtual environments,
such as games, through the development of different physics
simulations. The focus of this practical series is making the
scene move and interact according to the laws of classical
mechanics. Broadly speaking a physics simulator provides
three aspects of functionality:
• Moving items around according to a set of physical rules
• Checking for collisions (or constraints) between items
• Reacting to collisions (or constraint violations) between

items
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The use of the word item, rather than object this is in-
tended to suggest that physics can be applied to any and all
elements of a scene - e.g., objects, characters, terrain, particles,
or any part thereof. An item could be a crate in a warehouse,
the door of the warehouse, the limb of a jointed character, the
axle of a racing car, or even a snow flake particle.

1. Overview
Principles and Concepts Remember that, at this point, a
rigid body physics system is still dealing with all the simulated
objects - the new physical state of the simulated objects is
not drawn to the screen until after all the physics update is
complete, so the player will not see any of the intersections
between objects, if they are successfully resolved.

Figure 2. Systematic Approach - Uncomplicated Rigid
Body Update Steps.

A practical physics system, e.g., those used in interactive
environments, such as games, are based around Newtonian
mechanics - i.e. the three simple rules of motion that you
learned at school. These rules are used to construct differential
equations describing the movement of our simulated items.
The differential equations are then solved iteratively by the
algorithms that are developed over this course. This results in
believable movement and interaction of the scene elements.

The practicals then concentrate on preventing the vari-
ous moving elements from intersecting with other elements
in the scene. For example, a static scenes has no physical
presence and any object can intersect with any other object.
This is obviously not acceptable for a virtual world, such as
games. In order to prevent solid objects from intersecting, we
need to detect when they have intersected. In later practicals,
we look at a suite of algorithms for detecting these intersec-
tions and resolving them. When an intersection is identified,
the simulator needs to resolve the situation, by pushing the
two intersecting items apart. This is achieved through the
algorithms which simulate Newtonian mechanics, resulting in
believable looking motion that bounces, rebounds and slides

(i.e., friction).
This practical discusses the overall structure of a physics

system within the context of real-time interactive scenes, such
as games. Before getting into that, we should take a refresher
course on the Newtonian mechanics upon which our physics
systems will be based.

2. Newtonian Dynamics
A physics system for virtual scenes, such as games, are based
around Newtonian dynamics, which are described by three
fundamental laws of motion:
• A body will remain at rest or continue to move in a

straight line at a constant speed unless acted upon by a
force.

• The acceleration of a body is proportional to the resultant
force acting on the body, and is in the same direction as
the resultant force.

• For every action there is an equal and opposite reaction.
These laws will be familiar to you from school. We’ll

now consider each law in turn, and discuss their relevance in
developing your physics simulator.

2.1 Newton’s First Law
Often referred to as the Law of Inertia, this law states that
an object will only change its velocity if there is a force
acting on it. Consider a spacecraft in the vacuum of space
- it will remain stationary until its boosters are started. The
booster applies a forward force causing the spacecraft to move
forward. If the booster is then stopped, the spacecraft will
continue to move with constant velocity until a further force is
applied (e.g. a steering force, a slowing force, or a collision).

This is a fundamental aspect of physics systems - all ele-
ments of the virtual scene which are controlled by the physics
system are moved through the use of forces. If no force is
being applied to an object, then its velocity does not change.
Remember, this means that it will either remain stationary, or
continue to move at a constant velocity (i.e. the same direction
and speed). Of course, in the real world, a moving object in
the room you are currently in will gradually slow down, due
to friction from the surface it is moving along, or from the air
it is moving through. For this behaviour to occur in our virtual
world, these forces of friction must be simulated through the
physics simulator.

2.2 Newton’s Second Law
The second law of motion describes the relationship between
the force on a body, and the resultant acceleration of that body.
It is expressed mathematically as:

F = ma (1)

where F is the force on the body, m is the mass of the body,
and a is the resulting acceleration. Clearly the acceleration is
proportional to the force, as stated in the second law, and the
proportional factor is equal to the mass of the body.

www.xbdev.net/physics
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The first law of motion tells us that when a force is applied
to a body, it changes the object’s speed - the second law defines
that change. This is the equation which is at the core of a
physics simulator - the physical movement of the objects in
the virtual world is calculated by solving this equation for
every frame of the system. We will see how that is achieved
soon.

2.3 Newton’s Third Law
The third law states that every action has an equal and opposite
reaction. This means that whenever two physical objects in-
teract, there is an effect on both of them. An obvious example
is a collision of two pool balls - when one ball strikes another,
the speed and direction of both balls is changed. Another
oft-quoted example is of a weight on a table - there is a force
downward from the weight (due to gravity) and there is an
equal force upward from the table, keeping the weight on the
surface. An alternative wording of the law is “the forces of
two bodies on each other are always equal and are directed
in opposite directions”. Note that this wording states that
the forces are equal, not the acceleration - the acceleration is
inversely proportional to the mass of the object (as described
in the second law), so a larger body will accelerate less than
a smaller body. For example, bouncing an orange off a car
causes a big change in the orange’s velocity, but an impercep-
tible change in the car’s velocity - although the force acting
on both is equal.

Whereas the first two laws give us the basis for moving
objects around in our physics simulator, the third law adds an
element of realism and believability to how they interact. Tak-
ing account of the third law leads us to the collision detection
and collision response routines that we will address in later
practicals of this module.

3. Conservation of Momentum
There is one further physics law which we need to remind
ourselves of - the law of conservation of momentum. This
states that, if no external force acts on a closed system of
objects, the momentum of the closed system remains constant.
Momentum is the product of a body’s mass and velocity. The
total momentum of a system is the sum of the momentums
of each object in that system. This is best illustrated with an
example, see Figure 3 below:

Consider a body of mass m1 travelling with velocity v−1 ,
when it collides with a mass of m2 travelling with velocity v−2 .
The respective velocities of the two bodies after the collision
are v+1 and v+2 . The following equation must hold true:

m1v−1 +m2v−2 = m1v+1 +m2v+2 (2)

The equation sums the momentum of the two objects
before and after the collision, and equates them. Note, that
all velocities must be expressed in the same context, so in
this example, v−2 and v+1 are negative numbers. Also note the
nomenclature of adding a sign for values before the collision,

Figure 3. Conservation of Momentum - The law of
conservation of momentum. (− indicates before the collision
and + after the collision).

and a + sign for values afterwards − we will use this naming
convention extensively when we look at collision response
in more detail An alternative way to state this law is that the
centre of mass of any system of objects will always continue
with the same velocity unless acted on by a force from outside
the system. If we think of the two objects in the example as
a system, then the velocity of their combined centre of mass
can not change after the collision.

As with Newton’s third law, the law of conservation of
momentum will allow us to increase the realism introduced
by our physics engine as we introduce collision response
algorithms in later practicals.

4. Resolving Multiple Forces
We also require a quick reminder of how to resolve multiple
forces acting on a single body. The body in the left half of
Figure 4 below, has two forces acting upon it: a propulsion
force F and a downward gravitational force G. The right hand
figure shows how the two forces are combined to give the
resultant force R:

Figure 4. Summing Vector Forces - Vector Addition.

As you can see, the resolved force is simply the sum of all
the forces acting on the body. Bare in mind that we represent
forces with three dimensional vectors, comprising a x, y, and
z component, so adding two vectors simply involves adding
the relevant components of the vectors.

(Fnetx ,Fnety ,Fnetz) = (F1x +F2x ,F1y +F2y ,F1z +F2z) (3)

or, more generally:

∑F = (∑x,∑y,∑z) (4)

www.xbdev.net/physics
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The scalar size of the force is thus the length of the
summed vector, and the direction of the force is found by
normalising the summed vector. Remember, that the scalar
size of a vector is found by summing the squares of the com-
ponents and taking the square root. Normalising the vector
then involves taking each component of the original vector
and dividing by the length. Also bare in mind that square
roots and divisions are expensive computationally, so only
calculate the scalar size, and normalised vector, if they are
required - a lot of your algorithms will only require the three
components of the summed vector, which are much cheaper
to compute.

5. Physics Engine Structure
Throughout this practical series the piece of software which
provides the physical simulation is referred to as a Physics
Simulator. Strictly speaking a simulator is a device designed
to convert energy into useful mechanical motion. Within the
context of a system, the physics simulator provides the motion
of all of the elements of the virtual world; as such, it needs to
be able to move any item in the world. At the risk of stretching
the analogy, imagine designing a real system which needs to
be able to move many different things in the real world - such
a system would need a generic set of connections, and those
connections would need to be built into everything it was
expected to power.

Hence, the physics engine for a game tends to be a separate
entity which links to the rest of the code through an interface;
it doesn’t care what the entities are that it is moving, it just
cares about their physical properties, for example, size, weight,
and velocity. This leads to the concept of a “physics engine”
as a module which is distinct to the graphics, system, and
audio code. Ideally a physics engine should be able to provide
physical motion and interaction for any virtual scene, through
a standard interface and data structure.

There are a number of commercially available physics
system used in the games industry, such as PhysX, Bullet, and
Havok - you will have noticed these logos during the start-up
sequence of many games in recent years. Also, some of the
larger publishers use an internally developed physics engine
across multiple projects and studios. As the aim of this lecture
series is to provide an understanding of how and why physics
functionality works in games, we will not be using a physics
engine developed elsewhere; instead you will be developing a
physics engine of your own.

5.1 Update Loop
A physics engine typically operates by looping through every
object in the scene, updating the physical properties of each
object (e.g., position and velocity), checking for collisions,
and reacting to any collisions that are detected.

The simulator loop, which calls the physics update for
each object of interest, is kept as separate as possible from the
rendering loop, which draws the graphical representation of
the objects. Indeed, the main loop of the system can essentially

consist of just two lines of code: one calling the render update,
and the other calling the simulation update. The simulation
should be able to run without rendering anything to screen, if
the rendering and simulation aspects of the code are correctly
decoupled. The part of the code which accesses the physics
engine will typically run at a higher frame-rate than the rest
of the game, especially the renderer. The physical accuracy
of the simulation improves as the speed of the simulation is
increased - games often update the physics at a rate of 120fps,
even though the renderer may only be running at 30fps. As
we will see in later practicals in this series, the physics engine
works by iteratively solving differential equations representing
the motion of the simulated objects, so the more frequent the
iterations, the more accurate the results will be, hence the
higher update rate of the physics engine.

Clearly, if there are large numbers of game entities requir-
ing physical simulation, this can become a computationally
expensive situation. In order to reduce the number of ob-
jects simulated by the physics engine at any time, similar
techniques to those used in the graphics code for limiting the
number of objects submitted to the renderer are employed.
However, culling objects based on the viewing frustum is not
a good way of deciding which objects receive a physics update
- if objects’ physical properties cease to be updated as soon as
they are off-camera, then no moving objects would enter the
scene, and any objects leaving the scene would just pile up
immediately outside the viewing frustum, which would look
terribly messy when the camera pans around.

A more satisfactory approach is to update any objects
which may have an interaction with the player, or which the
player is likely to see on screen, either now or in the near
future. This is usually achieved by splitting the virtual world
into a series of regions in some way - the simulation loop then
only updates the objects which are in the regions currently
of interest. The decision of which regions are currently of
interest is made right at the start of the simulation loop, as
it provides a very high level culling of candidate objects. It
will typically involve selecting the region(s) where the cam-
era and player are currently residing, and any regions which
the camera or player may move into in the near future. As
you can tell from this description, there is no single solution
to this issue, and the algorithms will be crafted toward the
specific simulation effect. For example, an open world vir-
tual environment will be made up of many regions, and the
algorithm deciding which ones are currently active will be
based on numerous parameters including the current speed of
the player, the activity of particularly relevant AI. Whereas
a two-dimensional scrolling platform simulation is likely to
consist of a chain of regions along the two-dimensional route,
only updating the region where the player happens to be, and
the next one along the chain.

When simulating the physical behaviour of many objects,
it is easy to fall into the trap of updating some of the objects
more than once in a single step of the simulation. For example,
if body A collides with body B, but then body C collides with

www.xbdev.net/physics
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body A, it is tempting to go back and update body A again
with this new information. This approach can quickly lead to
discrepancies due to some objects receiving far more updates
than others, or even to an extended or infinite delay as the
sequence goes round and round some inter-related objects.
Care should be taken to only apply a physics update once for
each object in each step of the simulation - any remaining
intersections will be addressed in the following set of updates.

6. Physical Representation
Each item simulated by the physics engine requires some data
representing the physical state of the item. This data consists
of parameters which describe the item’s position, orientation
and movement. Depending on the complexity and accuracy
of the physical simulation required, the data and the way in
which it is used become more detailed. As ever, the simpler
the physical representation, the cheaper the computational
cost and, therefore, the greater the number of items which can
be simulated. The three main types of simulation are particles,
rigid bodies and soft bodies.

6.1 Particles
The simplest representation of physical properties is achieved
through the particles method. In this case, items are assumed
by the physics engine to consist of a single point in space
(i.e. a particle). The particle can move in space (i.e. it has
velocity), but it does not rotate, nor does it have any volume.
This approach can be used for real-time particles, and also for
other virtual items at times when speed of calculation is more
important than accuracy - for example, when larger objects
are sufficiently distant, or even off-camera, so that the player
is unlikely to see intersections or lack of rotational detail.

6.2 Rigid Bodies
The most common physical representation system is that of
rigid bodies. In this case, items are defined by the physics
engine as consisting of a shape in space (e.g. a cube or a
collection of spheres). The rigid body can move in space, and
can rotate in space - so it has both linear and angular velocity.
It also has volume - this volume is represented by a fixed
shape which does not change over time, hence the term “rigid
body”. This approach is taken for practically everything in
games where reasonable accuracy (or better) is required. More
complex items, such as a spaceship, a tea-pot, or a dinosaur,
are built up from a number of interconnected rigid bodies -
each element of the skeletons and scene graphs is likely to be
represented in the physics engine by a rigid body.

6.3 Soft Bodies
Items which need to change shape are often represented in the
physics engine as soft bodies. A soft body simulates all the
aspects of a rigid body (linear and angular velocity, as well
as volume), but with the additional feature of a changeable
shape - i.e. deformation. This approach is used for items
such as clothing, hair, wobbly alien jelly-fish, an so forth. It

is considerably more expensive, both computationally and
memory-wise, than the rigid body representation.

It should be noted that a fully implemented physics engine
will include options to simulate items at any of these levels
of complexity at any time; it is up to the user to decide which
items are simulated by which methods, appropriate to the
scene and frame-rate constraints. Later practicals in the series
consider these simulation approaches in a lot more detail.

7. Physics Shapes are not
the same as Graphics Shapes

We have already discussed how the physics simulation should
be as decoupled as possible from the rendering loop. This also
applies to the data structures, and to the shapes and meshes of
the game objects. Whereas the object which is rendered onto
the screen can be any shape, made up of many polygons, it is
not practical to simulate large numbers of complexly shaped
objects in the physics engine.

Almost every object that is simulated by the physics en-
gine will be represented as a simple convex shape, such as a
sphere or cuboid, or as a collection of such shapes. As we’ll
see in later practicals, calculating collisions and penetrations
between objects can be a very expensive process, so simplify-
ing the shapes which represent the simulated objects greatly
improves the required computation.

Each game object data structure contains a link to the
graphical representation (e.g., the vertex lists and textures),
that we dealt with in graphics), and the physical representation
(where the object is, how fast it is travelling, the shape and
size of its physical presence). So the data structure for an
object such as a crate contains a link to the vertex lists which
give the renderer detailed instructions on how to draw it, and
a much more simple set of data defining the height, width and
length of the cuboid which contains all vertices of the crate.
Similarly a Christmas bauble data structure contains some
very basic information on the size of the sphere which is used
to simulate it in the physics engine.

8. Three Dimensions and Vectors
The physics engine which is developed in this practicals series
is three dimensional - that is, it simulates the behaviour of
objects within a three-dimensional environment, so all objects
are modelled and simulated in the x, y and z axes. The con-
cepts presented are just as applicable to a two-dimensional
simulation, such as a 2D platform game or old-style space
shooter, in which case only the x and y axes would be used.

It is also important to remember that the physical prop-
erties of the simulated objects are represented by vectors,
rather than scalar parameters. This means that, not only is the
position of an object in world space represented by a three
dimensional vector (Px, Py, Pz), but the velocity and acceler-
ation are also represented by three dimensional vectors. For
example a ball falling vertically to the ground may have a
velocity of (0, -1, 0), showing that the y component of the

www.xbdev.net/physics
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velocity is negative while the x and z components are zero.
A hover-ship which is moving in a vertical circle at constant
speed will have sinusoidally changing values of velocity in
the x and y components of the velocity vector.

Remember that speed is a ‘scalar’ quantity, whereas veloc-
ity is a ‘vector’, so the length of the velocity vector is equal to
the speed.

S =
√

V 2
x +V 2

y +V 2
z (5)

9. Implementation

During the course of this practical series you will create a
different physics simulations. The implementation sections
of the practicals include example code, and explanation, of
how to achieve this. While graphics introduces new API com-
mands and OpenGL functions to stay upto date with current
system technology, this is not the case with the Physics-Based
Animation practicals. You will be using the C++ that you al-
ready know to build your physics simulations. Consequently
the example code should be seen as just that: an example of
how to implement the theories and algorithms presented in
each practical.

The aim of this practical session is to structure your frame-
work program so that the physics engine can be implemented
over the remainder of the practical series. You will separate
the simulation update from the graphics update, introduce the
basic data structures required by the physics engine, and use
this framework to move an object around the environment
independently of the graphics update.

You will implement the simulated objects as rigid bodies,
so a ‘Rigid Body’ class is required. The code snippet below
shows the member data that the rigid body class needs. The
purpose of each variable is probably clear from their names,
and we will gradually introduce the way in which they are
calculated and utilised over the next couple of practicals. Each
of your objects which is to be simulated by your physics
engine requires this data, which should be separate from the
data related to how the object is rendered (e.g. vertex lists and
texture details).

Listing 1. Rigid Body Elements (note: for an uncomplicated
particle system, we can exclude the rotational terms).
1 class RigidBody
2 {
3 // <−−−−−LINEAR −−−−−−−−−>
4 Vector3 m position ;
5 Vector3 m linearVelocity ;
6 Vector3 m force ;
7 float m invMass ;
8
9 // <−−−−−ANGULAR −−−−−−−−>

10 Matrix m orientation ;
11 Vector3 m angularVelocity ;
12 Vector3 m torque ;
13 Matrix m invInertia ;
14 };

10. Summary

We have introduced the basic physics-based concept of mo-
tion, and had a quick refresher course of the physics required
to develop the algorithms. The physics simulators which we
will develop will be based on forces, so we have seen how to
resolve multiple forces affecting a single body, and discussed
the mathematical relationship between force and acceleration.
In the next practical, we will discuss how to implement that
relationship and how to translate an acceleration into a moving
object in a virtual environment. Your module work should
now be structured in such a way that the physics simulation
is separate from the renderer update, and so that the physics
implementation which you will develop can easily interface
with the rest of your system (i.e., modular component pro-
gramming).

11. Exercises
This practical only gives a brief taste of physics-based prin-
ciples. As an exercise for the student to help enhance their
understanding:

Intermediate
• Implement basic particle objects (e.g., spheres) and have

them float around in a scene
• Implement a large scene with a vast number of bodies

(e.g., >100)
• When a key is pressed apply random forces to the bodies

to trigger motion
• Reversing the velocity of each object when it goes out-

side a pre-defined bounds (e.g., a box or sphere) - simple
collision response effect
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