
Workshop Series, March 2014
The Path To Working Smarter Not Harder

Workshop Series: Inverse Kinematics
Benjamin Kenwright1*

Abstract
This practical focuses on the implementation of simple Inverse Kinematic (IK) chains. Inverse kinematics is a challenging and
valuable multi-discipline technique (e.g., animation and robotics). The issue inverse kinematics attempts to resolve is to find a
set of joint configurations of an articulated structure based upon the desirable end-effector location. The student should use
this practical to implement a custom real-time interactive inverse kinematic system using either the cyclic coordinate descent
algorithm (CCD) or the Jacobian pseudo-inverse method.

Keywords
Inverse Kinematics (IK), Cyclic Coordinate Descent (CCD), Jacobian, Iterative, Video Games, Real-Time, End-Effector,
Linked-Chains, C++, Psuedo Inverse

1 Workshop Series (www.xbdev.net) - Benjamin Kenwright

Contents

Introduction 1

1 Overview 1

2 Analytical Inverse Kinematics 2

3 Cyclic Coordinate Descent (CCD) 2

4 Iterative Jacobian Pseudo Inverse 3

5 Summary 4

6 Exercises 4

Acknowledgements 4

A Appendix 4
A.1 Cyclic Coordinate Decent (CCD) 4
A.2 Jacobian Matrix . 5

Introduction
Inverse Kinematics (IK) The topic of this practical is the
implementation of a real-time inverse kinematic simulation
(i.e., a linked chain of rigid body objects). The user should be
able to interact with the simulation while it is running (e.g.,
through the mouse or keyboard) to control the inverse kine-
matic target end-effector. The inverse kinematic chain can be
implemented using either the cyclic coordinate descent (CCD)
algorithm or the Jacobian pseudo-inverse matrix method.

Tasks
1. Visually display interconnected chain of 3D rigid bodies

(i.e., base and end-effector)
2. Implement an uncomplicated single-joint IK system us-

ing an analytical method (i.e., axis-angle) which follows
the mouse cursor around the screen (Section 2)

3. Implement a linked-chain of interconnected limbs using
an iterative inverse kinematic technique (e.g., CCD IK

with details given in Section 3)
4. User input (e.g., mouse or keyboard) to control and

move the end-effect target
5. Areas to explore, include, altering the number of links

(e.g., 10 to 1000). Adding physical constraints (i.e.,
limit the joint angles +/- specified amount). Modify the
code to support multiple end-effectors (e.g., tree-like
structure)

1. Overview
Principles and Concepts The application of kinematic al-
gorithms for animation is used to control articulated postures
based on a simple definition of joint angles and limb lengths.
These structures may take practically any form from a hu-
manoid bipedal character to just about anything that can be
imagined using a hierarchy.

Hierarchy Structures described using a hierarchical form
are defined using a parent-child system similar to that of tree
structure. In the case of computer characters, each rigid limb
of the structure is a child node in the tree whose parent node
provides a reference point from which it is described. The
parents are themselves child nodes of limbs above in the
hierarchy and this recursive relationship continues up to a
root node (i.e., the bottom of the tree). The parent of the root
node is effectively taken as the global frame of reference and
defined as such.

End-Effectors At the top end of the tree are leaf nodes
which are children that have no descendants of their own. An
end-effector in terms of kinematic chains is any node within
the hierarchy that an animator wishes to directly position, for
example, to interact with the environment. End-effectors are
commonly the leaf nodes of an articulated structure, such

Workshop Series: Inverse Kinematics — 2/6

as, the feet and hands of an animated character since they
generally interact with the world.

Graphics Inverse kinematics is a programmatic solution
for controlling the animation of rigid models. When artists
generate an animated model for a virtual environment, such as
a game, the animations created by the artists won’t necessarily
work for every position in the world. For example, if an artist
were to create an animation of a character pressing a button,
the animation would only work so long as the button was
always at the same position relative to the model. If the button
were to be moved up or down the pre-made animation would
have no way to account for that. With inverse kinematics, we
can reconfigure the interconnected set of links (e.g., animate
the model) so the end-effector (e.g., a hand) can be placed
anywhere.

Figure 1. Forward & Inverse Kinematics - Illustrating
the relationship between forward and inverse kinematics
parameters

Inverse Kinematic (IK) Methods
1. Analytical (e.g., Geometric Analysis) - Section 2
2. Heuristic (e.g., CCD) - Section 3
3. Solver (e.g., Jacobian & Gradient-Based Search) - Sec-

tion 4

2. Analytical Inverse Kinematics
The geometric/analytical algorithms tend to be very quick be-
cause they reduce the IK problem to a mathematical equation
that need only be evaluated in a single step to produce a result
(e.g., see Figure 2). The limitations of this class of solver
becomes apparent in the case of large chains. In such cases,
the task of reducing the problem to a single-step mathemat-
ical equation is impractical. Therefore geometric/analytical
techniques tend to be less useful in the field of character ani-
mation.

3. Cyclic Coordinate Descent (CCD)
IK solvers that are based on CCD use an iterative approach
that takes multiple steps towards a solution (see Figure 4).
CCD works by analysing each joint one-by-one in a progres-
sive refinement philosophy. Starts with the last joint in the
chain (e.g., a hand for a character) and tries to rotate it to ori-
entate it toward the target. The steps that the method takes are
formed heuristically, therefore each step can be performed rel-
atively quickly. An example of a possible heuristic would be
to minimise the angle between pairs of vectors created when

Figure 2. Uncomplicated Analytical Inverse Kinematic
Example - Single limb and joint angle (e.g., can be solved
using the dot and cross product).

projecting lines through the current node and end-effector
and current node and desired location. However, because the
iterative step is heuristically driven, accuracy is normally the
price paid for speed. Another issue with this technique is that
one joint angle is updated at a time as opposed to the complete
hierarchical structure. This has the undesirable and unrealistic
result of earlier joints moving much more than later limbs in
the IK chain.

Figure 3. Animated Inverse Kinematic Simulation -
Real-Time Interactive IK Simulation Screen Capture (i.e.,
following mouse around screen).

Implementation The Cyclic Coordinate Descent (CCD) al-
gorithm is an iterative IK solution. The basic idea of the CCD
algorithm is to loop over each bone in the IK chain and rotate

www.xbdev.net/physics

Workshop Series: Inverse Kinematics — 3/6

it such that the end effector (which is typically the last bone
in the chain) will move as close as it can to the final position.

Figure 4. Cyclic Coordinate Descent (CCD) - Simple
illustration showing the principle of the CCD technique. (a)
Compute the vector direction of the current bone to the goal
position and the current bone to the end effector; (b)
Compute the rotation matrix that will rotate the end effector
vector onto the goal vector. To do this, we first compute a
rotation axis by taking the cross product of the end effector
vector and the goal vector. Next, using the dot product, we
calculate the angle between the two vectors. We then
compute our rotation matrix using our new axis and angle; (c)
Apply the rotation to the current bone.

4. Iterative Jacobian Pseudo Inverse
Due to their scalability, numerical techniques often form part
of an inverse kinematics solver. However, because of their
iterative nature, such methods can be slow. So far research
into the field of kinematics has failed to find a general non-
numerical solution to the problem. Many researchers have
proposed hybrid techniques yet these still rely on a numer-
ical aspect. It is therefore important to find ways of using
numerical techniques as efficiently as possible. In this paper
we take a look at the Jacobian-based IK solver and techniques
that allow this method to be used as an efficient real-time IK
solver.

Algorithm 1 Algorithm for the CCD system - where we start
at the final bone in the system and work backwards.

while While distance from effector to target > threshold
and numloops<max do

Take current bone
Build vector V1 from bone pivot to effector
Build vector V2 from bone pivot to target
Get the angle between V1 and V2
Get the rotation direction
Apply a differential rotation to the current bone
If at the base node then the new current bone is the last

bone in the chain
Else the new current bone is the previous one in the

chain
EndIf

end while

The end effector velocities are related to the joint veloci-
ties of the robot through the Jacobian matrix as follows:

ė = Jθ̇ (1)

where J is the Jacobian representing the partial derivatives
for the change in end-effectors locations with change in joint
angles (e.g., see Appendix for details).

Typically, the system of joints consists of a non-square
Jacobian, hence, we need to perform the ‘pseudo inverse’
operation to yield the joint velocities and solve for the angular
displacement:

J+ = JT (JJT)−1

θ̇ = J+ė
(2)

where we are able to connect θ̇ for change in joint angles with
change in end-effector location ė. This method sets the angle
values to the pseudo inverse of the Jacobian. It tries to find a
matrix which effectively inverts a ‘non-square’ matrix. It has
singularity issues which tend to the fact that certain directions
are not reachable. The problem is that the method first loops
through all angles and then needs to compute and store the
Jacobian, perform a pseudo inversion, calculate the changes
in the angle, and last apply the changes (see Appendix for
details on formulating the Jacobian).

Algorithm 2 Algorithm Jacobian System

while e is too far from t do
Compute J(e,θ) for the current pose
Compute J−1 i.e., invert the Jacobian matrix
∆e = β (t− e) - pick approximate step to take
∆θ = J−1 ∆e - compute change in joint DOFs
θcurrent = θprevious +∆θ - apply change to DOFs
Compute new e vector - apply forward kinematics to

see where we ended up
end while

www.xbdev.net/physics

Workshop Series: Inverse Kinematics — 4/6

5. Summary
We have introduced the basic inverse kinematic concepts, and
had a quick refresher course of the kinematics required to
develop the algorithms. Your module work should now be
structured in such a way that the inverse kinematic simulation
is separate from the renderer update, and so that the implemen-
tation which you will develop can easily interface with the
rest of your system (i.e., modular component programming).

6. Exercises
This practical only gives a brief taste of inverse kinematics.
As an exercise for the student to help enhance their under-
standing:

Intermediate
• Implement a hierarchy with multiple interconnected limbs
• Add physical constraints (i.e., impose joint limits) - e.g.,

an arm is able to make unrealistic rotations and even
pass through itself. Adding physical constraints will
improve the realism of the animation. Examples of ways
to do this include clamping the rotation angles or even
implementing self collision.

• Optimize for speed. The practical inverse kinematic
algorithms are written with readability in mind and does
little to optimize for speed

• Bias the priority of the joints - so different joints converge
on the target at different rates

Advanced
• Try and load in an animated skeleton (e.g., human body

or arm) and connect the limbs together using a kinematic
hierarchy - then try and control the character’s motion
using inverse kinematics (e.g., reaching for an object or
walking)

Figure 5. Hierarchy - Creating an appropriate hierarchy is
particularly important when it comes to animating an object
or character.

Acknowledgements
We would like to thank all the students for taking time out
of their busy schedules to provide valuable and constructive

feedback to make this practical more concise, informative, and
correct. However, we would be pleased to hear your views on
the following:
• Is the practical clear to follow?
• Are the examples and tasks achievable?
• Do you understand the objects?
• Did we missed anything?
• Any surprises?

The practicals provide a basic introduction for getting
started with physics-based animation effects. So if you can
provide any advice, tips, or hints during from your own ex-
ploration of simulation development, that you think would
be indispensable for a student’s learning and understanding,
please don’t hesitate to contact us so that we can make amend-
ments and incorporate them into future practicals.

Recommended Reading
Computer Animation: Algorithms & Techniques, Rick Parent,
Publisher: Morgan Kaufmann, ISBN: 978-0124158429

A Mathematical Introduction to Robotic Manipulation, Richard
M. Murray, Zexiang Li, S. Shankar Sastry, Publisher: CRC
Press, ISBN: 978-0849379819

Code Complete: A Practical Handbook of Software Construc-
tion, Steve McConnell, ISBN: 978-0735619678

Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin, ISBN: 978-0132350884

Making kine more flexible, Lander, Jeff and CONTENT,
Game Developer Magazine, 1, 15-22, 1998

Game Inverse Kinematics: A Practical Introduction (2nd Edi-
tion) Kenwright. ISBN: 979-8670628204
Kinematics and Dynamics Paperback. Kenwright. ISBN:
978-1539595496
Game Collision Detection: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1511964104
Game C++ Programming: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1516838165
Computational Game Dynamics: Principles and Practice (Pa-
perback). Kenwright. ISBN: 978-1501018398
Game Physics: A Practical Introduction (Paperback). Ken-
wright. ISBN: 978-1471033971
Game Animation Techniques: A Practical Introduction (Pa-
perback). Kenwright. ISBN: 978-1523210688

1. Appendix

A.1 Cyclic Coordinate Decent (CCD)

Listing 1. A minimilistic C++ implementation of the Cyclic
Coordinate Descent Inverse Kinematic algorithm for a singly
linked chain.

www.xbdev.net/physics

Workshop Series: Inverse Kinematics — 5/6

1 class Link
2 {
3 public:
4 Link(Vector3& axis, float angle)
5 {
6 m axis = axis;
7 m angle = angle;
8 }
9 // Note− we could store this as a quaternion

10 Vector3 m axis; // local axis
11 float m angle; // local angle
12
13 ..
14 // other helper variables to represent the
15 // structure (e.g., length, quaternion, matrix)
16 }; // End Link
17
18
19
20 // Build or set of links (i.e., axis and angle)
21 void Setup()
22 {
23 for(int i=0; i<numLinks; ++i)
24 {
25 links.push back(new Link(Vector3(0,0,1), 0));
26 }
27 }
28
29
30
31
32
33 // This is the heart of the program − this is what performs
34 // all the IK work − if we have a problem − it will
35 // typically be located within this function
36 void UpdateIK()
37 {
38 // 1. Get and draw the current ‘end’ effector
39 // position we desire based on the mouse position..
40
41 // Current ‘end’ effector position
42 Vector3 target = GetMousePosition2Dto3D();
43 DrawSphere(target, 0.16f, 0.1f,0.5f,0.4f);
44
45
46 // Either work from the end towards the base or from
47 // the base towards the leaf
48 //for (int i=links.size()−1; i>=0; −−i)
49 for (int i=0; i<(int)links.size(); i++)
50 {
51 // 2. UpdateHierarchy();
52
53 // Update the hiearchy − however, we can
54 // optimize this to only update the section of the
55 // hierarchy or update the target based on the
56 // modified link transformation
57 UpdateHierarchy();
58
59 3. Peform iterative IK link−by−link..
60
61 // We iteratively update the ‘target’ based on
62 // the new position of the limb − so we don’t have
63 // to keep updating the hierarchy − performance
64 // improvement
65 Reach(i, target);
66 }
67
68 // 4. Draw Hiearchy
69 for (int i=0; i<(int)links.size(); ++i)
70 {
71 DrawSphere(GetTranslation(links[i]−>m base), 0.1f,←↩

0.5f,0.5f,0.9f);
72
73 Vector3 base = GetTranslation(links[i]−>m base);

74 Vector3 end = Transform(links[i]−>m base, Vector3(←↩
linkLength,0,0));

75
76 DrawArrow(base, end, 0.2f);
77 }
78
79 }// End UpdateIK(..)

A.2 Jacobian Matrix
The Jacobian J is a matrix that represents the change in joint
angles ∆θ to the displacement of end-effectors ∆e. Each frame
we calculate the Jacobian matrix from the current angles and
end-effectors. We assume a right-handed coordinate system.
To illustrate how we calculate the Jacobian for an articulated
system, we consider the simple example shown in Figure 6.

Figure 6. Jacobian IK Example - Relationship between
multiple joint angles and end-effectors.

The example demonstrates how we decompose the prob-
lem and represent it as a matrix for a sole linked chain with a
single three degree of freedom (DOF) end-effector. We then
extend this method to multiple linked-chains with multiple
end-effectors (each with six DOF) to represent a structured
hierarchy.

θ =


θ0
θ1
...
θn

 (3)

e =

ex
ey
ez

 (4)

where θ is the rotation of joint i relative to joint i− 1, and
e for the end-effectors global position. The angles for each
joint and the error for each end-effector are represented by
matrices.

From these matrices, we can determine that the end-effectors,
and the joint angles are related. This leads to the forward kine-
matics definition, defined as:

www.xbdev.net/physics

Workshop Series: Inverse Kinematics — 6/6

e = f (θ) (5)

We can differentiate the kinematic equation for the rela-
tionship between end-effectors and angles. This relationship
between change in angles and change in end-effectors location
is represented by the Jacobian matrix.

ė = J(θ̇) (6)

The Jacobian J is the partial derivatives for the change in
end-effectors locations by change in joint angles.

J =
δe
δθ

(7)

If we can re-arrange the kinematic problem:

θ = f−1(e) (8)

We can conclude a similar relationship for the Jacobian:

θ̇ = f−1(ė) (9)

For small changes, we can approximate the differentials
by their equivalent deltas:

∆e = etarget − ecurrent (10)

For these small changes, we can then use the Jacobian to
represent an approximate relationship between the changes of
the end-effectors with the changes of the joint angles.

∆θ = J−1
∆e (11)

We can substitute the result back in:

θcurrent = θprevious +∆θ (12)

The practical method of calculating J in code is used:

δe
δθi

= r j× (etarget − p j) (13)

where r j is the axis of rotation for link j, etarget is the end-
effectors target position, p j is end position of link j.

For example, calculating the Jacobian for Figure 7 gives:

J =


δe

δθ0
δe

δθ1
δe

δθ2

=

r0× (ecurrent − p0)
r1× (ecurrent − p1)
r2× (ecurrent − p2)

 (14)

and

e = ecurrent − etarget (15)

The Jacobian matrix is calculated for the system so that
we can calculate the inverse and hence the solution. One the
Jacobian system has been defined, we iteratively solve for
the change in angle using an approximate technique, such as,
Pseudo-Inverse Transpose.

Figure 7. Jacobian - Iteratively calculating the Jacobian on
a frame by frame basis.

www.xbdev.net/physics

	Introduction
	Overview
	Analytical Inverse Kinematics
	Cyclic Coordinate Descent (CCD)
	Iterative Jacobian Pseudo Inverse
	Summary
	Exercises
	Acknowledgements
	Appendix
	Cyclic Coordinate Decent (CCD)
	Jacobian Matrix

