
Workshop Series, March 2014
The Path To Working Smarter Not Harder

Workshop Series: Position-Based Dynamics
(e.g., Verlet System)
Benjamin Kenwright1*

Abstract
This practical focuses on position-based dynamics using the Verlet integration scheme. The student needs to implement a
real-time interactive soft-body effect using Verlet mechanics (e.g., cloth with collision detection, forces, and movement).

Keywords
Verlet Integration, Distance Constraints, Position-Based Dynamics, Newtonian Mechanics, Hooke’s Law, Springs, Particles,
Constraints, Soft-Bodies, Classical Mechanics

1 Workshop Series (www.xbdev.net) - Benjamin Kenwright

Contents

Introduction 1

1 Overview 1

2 Particles 2

3 Integration 2

4 Cloth Interconnection Structure 3

5 Forces 3

6 Contacts and Collisions 4

7 Summary 4

8 Exercises 4

Acknowledgements 5

Introduction
Position-Based Dynamics The topic of this practical is the
implementation of a real-time particle constraint simulation
(i.e., an interconnected set of particle bodies). The user should
be able to interact with the simulation while it is running
(e.g., through the mouse or keyboard) to control the cloth
simulation- such as push or pull the object around. The cloth
should be implemented using position-based mechanic prin-
ciples (e.g., Verlet velocity approximation integration, with
distance ‘snapping’ constraints, and environmental collision
detection, such as, sphere-sphere and sphere-plane for the
ground).

Tasks
1. Visually display interconnected position-based simula-

tion system using the Verlet method (e.g, a cloth)
2. User input (e.g., mouse or keyboard) to control and

move the Cloth around

3. Cloth effect should be under the influence of gravity and
come to rest on the ground (i.e., sphere-plane collision
detection)

1. Overview
Principles and Concepts Position-based dynamics allow
us to easily resolve collision constraints while resolving pene-
tration violations completely by projecting intersecting points
to valid locations. We use this approach in this practical
to build a real-time soft-body simulator which is part of a
physics library of interactive environments, such as games.
This approach demonstrates the strengths and benefits of the
position-based method (e.g., Verlet integration).

Remember that, at this point, a particle physics system is
still dealing with forces and masses - the internal workings
of the simulation system works with a velocity approxima-
tion (i.e,. the velocity is calculated based on the current and
previous position - ‘velocity-less’ simulation).

Position-Based Dynamics Features The main features and
advantages of position based dynamics are
• The formulation we propose allows the handling of gen-

eral constraints in the position based setting
• Position based simulation gives control over explicit in-

tegration and removes the typical instability problems
• Positions of vertices and parts of objects can directly be

manipulated during the simulation
• The explicit position based solver is easy to understand

and implement

Cloth Generating realistic real-time cloth effects on-the-fly
for interactive environments, such as games, is challenging
and interesting. This practical gives an introductory explana-
tion for students to enable them to integrate cloth effects into
their demos. We explain the principles, computational over-



Workshop Series: Position-Based Dynamics
(e.g., Verlet System) — 2/5

heads, and numerical approximations, necessary for achieving
an aesthetically pleasing realistic interactive soft body effect.

Figure 1. Animated Cloth Simulation - Real-Time
Interactive Cloth Simulation Screen Capture.

Figure 2. Verlet Integration (Velocity and Position) -
‘Velocity’-less integration system (i.e., know as Verlet
Integration), which uses the current and previous position.

2. Particles
To achieve real-time frame-rates, we focus on a particle-based
approach. The simulated movement of each particle uses
Newtonian mechanics (i.e., f = ma). Hence, each particle
needs to have a:
• position
• acceleration
• mass

However, since we are constantly calculating 1/mass, it’s
more convenient and computationally faster to store the in-
verse mass (i.e., invmass).

3. Integration
Differentiation is used to represent the ‘rate-of-change’ of
something (e.g., change in position with time - velocity) -
while integration is used to find the opposite (e.g., how the
velocity causes a change in position). We apply forces to our

Figure 3. Screen Capture - Attaching the cloth to an
animated character.

Figure 4. Screen Capture - Wrapping cloth around rigid
body objects.

particles, either from wind or from neighbouring constraints.
From Newton’s second law (i.e., f = ma), we can derive the
acceleration. Integrating the acceleration with respect to time
gives us the velocity. Integrating the velocity with respect to
time gives us the position. This provides a relationship that
we use to predict how the velocity and position change with
respect to time in relation to the applied forces.

Euler Integration A first order approximation method that
is very popular is known as Euler’s integration, shown below
in Equation 1:

v(t +1) = v(t)+a∆t

p(t +1) = p(t)+ v(t +1)∆t
(1)

However, for the simulation to remain stable and realistic,
the time-step must be extremely small and the forces (i.e., ac-
celerations) must remain within reasonable limits. Since we’re
interested in real-time interactive environments (e.g., games),
stability is important. Therefore, we modify the first order

www.xbdev.net/physics



Workshop Series: Position-Based Dynamics
(e.g., Verlet System) — 3/5

Euler equation to formulate the Verlet integration method (i.e.,
a velocity-less) to create a more stable and efficient technique.

Verlet Integration The Verlet integration method (i.e., ve-
locity approximation approach) works by using the current
and previous position to create the velocity (i.e., instead of
using the exact velocity) as done with traditional methods in
classical mechanics (see Figure 2). The velocity approxima-
tion is given below in Equation 2:

v(t)≈ p(t +1)− p(t) (2)

The velocity approximation in Equation 2 is substituted
into the first order Euler Equation 1 and the popular Verlet
Equation 3 is produce below:

p(t +1) = 2p(t)− p(t−1)+a∆t2 (3)

The Verlet integration scheme is algorithmically straight-
forward and computationally fast to implement as shown in
Listing 1 below:

Listing 1. Verlet Integration (without Damping).
1 Vector3 temp = pos;
2 pos = 2 ∗ pos − old pos + acceleration∗dt∗dt
3 old pos = temp;

Drag/Damping We introduce drag/damping to reduction the
amplitude of oscillation and ensure the system of intercon-
nected particles converges on a stable still result. Damping
effectively causes energy to be lost (i.e., drained) from the
system to overcome numerical inaccuracies and approxima-
tions to help ensure our simulation remains stable. We modify
the uncomplicated Verlet integration Equation 3 to include
damping as shown below in Equation 4:

p(t +1) = p(t)(2− k)− (1− k)p(t−1)+a∆t2

= p(t)+ [p(t)− p(t−1)](1− k)+a∆t2 (4)

where k is the damping constant between 0.0 and 1.0.
Verlet integration ‘with’ damping is a bit more complex

and expensive compared to the basic Verlet scheme shown
in Listing 1; however, it’s a necessary evil if we want our
system to remain stable and converge. The Verlet damped
integration implementation is shown below in Listing 2 with
the DAMPING constant set to a value between 0 and 1 (e.g.,
0.9):

Listing 2. Verlet Integration (with Damping).
1 Vector3 temp = pos;
2 pos += (pos−old pos)∗(1.0f−DAMPING) + acceleration∗←↩

dt∗dt;
3 old pos = temp;

4. Cloth Interconnection Structure
Constraint-Pairs The cloth structure is formed by creating
an array of constraints for each particle. Each constraint points
to ‘two’ particles (i.e., a distance constraint). We can use as
many distant constraints as are necessary to create the neces-
sary stiff cloth effect. We iteratively update each constraint
individually. As you can imagine, as we update and correct
one constraint, it affects the adjacently connected particles
and their constraints. However, we find that, after a finite
number of iterations, the system of interconnected particles
will eventually ‘converge’ on a result with all the constraints
in a valid state. We can limit the number of iterations to ensure
we maintain a real-time frame-rate.

Hooke’s Law For traditional interconnected set of springs
we would use the popular Hooke’s law (i.e., as demonstrated
in the previous practical) - where we calculate the force for
each constraint and apply it to each particle. We store the
rest length for the distance between each particle at the start.
The error between the current and stored rest length is used
to calculate the correcting force. However, for our velocity
Verlet integration scheme, we can simply snap the positions
into place. (i.e., see Listing 3)

Snap-To-Constraints Verlet constraints are simple. We ad-
just the ‘current’ position each frame. We work out the dis-
tance error and update the constraint so that each particle is
pushed back into place. As we update each constraint, it will
invalidate adjacently connected particle constraints. However,
if we iteratively keep updating the constraints, after a finite
time the system as a whole will converge on a result.

Listing 3. As shown in Figure 5, we need to push each
constraint back into place so that the constraint is valid.
1 err length = cur length − rest length
2 err direction = Length(p1−p0)
3 p0 −= err direction∗err length∗0.5
4 p1 += err direction∗err length∗0.5

where p0 and p1 are the particle positions for the constraint,
the rest length is the distance between the two particles ini-
tially (i.e., rest length=Length(p1-p0).

Topology - Structure, Shear, and Bending We need to
add additional interconnected constraints to create a cloth
effect that looks like cloth (i.e., not like a set of rigid hinges).
Hence, as well as the triangle edge constraints, we include
shearing and bending constraints, see Figure 6.

5. Forces
We need to inject various interactive forces into our simulation,
such as gravity and wind.

Gravity Gravity is added by iterating over every particle and
adding a downward force. This causes the cloth to swoosh
and drop.

www.xbdev.net/physics



Workshop Series: Position-Based Dynamics
(e.g., Verlet System) — 4/5

Figure 5. Fixed-Distance Constraints - Enforcing the
distance between each particle remains constant (i.e., a
fixed-length).

Figure 6. Interconnections - It isn’t enough for us to
merely connect each particle with a fixed-distance constraint.
We need to add additional constraints to produce a more
life-like cloth effect.

Wind Without wind the cloth effect is rather simple and
doesn’t really catch the viewers eyes. We can add in an
additional wavy flag type effect by adding a force based on
the triangles normal.

6. Contacts and Collisions
While the interconnected distance constraints that make up the
cloth effect are constant and enforce the particle stay together,
we can also add temporary contact constraints, that push the
particles out of contact with other rigid body surfaces (e.g.,
spheres and planes).

The Vertlet approach uses ‘position-based’ physics to en-
sure constraint satisfaction. For example, for each particle,
find the closest position that satisfies the constraint and move
it there.

An uncomplicated example - if we have a ground plane
(i.e., y == 0). For each iteration, we check if pos.y < 0, and
if it is, we set pos.y = 0. Same as for the distance constraints
in Section 4. The distance constraints acts like springs, i.e.,
solve for the equilibrium position, then force the positions of
the nodes into place.

Collision Handling We compute penetration depth (i.e., be-
tween particles and objects). We move particle object along
the contact normal by the penetration amount (i.e., out of
penetration to be just in contact).

Sphere When a particle penetrates a sphere, we push the
particle out. The direction is from the centre of the sphere to

the particle, and the distance is the penetration amount.

Plane For a plane, we can use the plane equation. The
principle is the same for the sphere and distance constraint.
When the particle violates the constraint, that is, it penetrates
the plane surface, we move the particle position along the
plane normal by the penetration amount.

7. Summary

Creating a realistic real-time cloth effect has never been easier.
The principle is computationally simple and relatively robust.
This practical enables the student to implementation a real-
time cloth effect that is stable and interactive. The practical
enables students to quickly, dissect, experiment, and expand
upon the basic cloth principle (e.g., working through the ex-
ercises). The initial uncomplicated implementation should
produce an output similar to Figure 1.

This practical introduced position-based dynamics for soft
body effects such as cloth. The technique uses a velocity
approximation method and enforces constraints, such as, dis-
tance and collisions. With the position-based approach it is
possible to manipulate objects directly during the simulation.
This significantly simplifies the handling of collisions, attach-
ment constraints and explicit integration and it makes direct
and immediate control of the animated scene possible

8. Exercises
This piratical only gives a brief taste of the potential of position-
based dynamics. As an exercise for the student to help en-
hance their understanding:

Intermediate
• Add tearing to the cloth effect
• Modify maximum constraint iterations (i.e., for more

softer/rigid constraints)
• Cloth fall hit floor (i.e. use plane equation for ground)
• Multiple objects (e.g., multiple cubes and spheres)
• Animate cloth - i.e., attach it to a character and move it

around (cape)
• Investigate inter-cloth collisions (e.g., twisting cloth)
• Performance profile the simulation and identify bottle-

necks
• Modify code for multi-threading (e.g., )GPU/CUDA ver-

sion of the code)
• Put texture on the cloth (i.e., texture map)
• Port to Sony’s PS3/PSP or Microsoft’s XBOX/XNA
• Disable damping and see what happens
• Add space partitioning or collision detection (e.g., oc-

tree)
• Different masses for each particle
• Update different parts of the cloths with a different num-

ber of iterations (i.e., stiffer/less stiffer constraints)
• Draw the particles with different colours to emphasis

stress and maximum distance correction error

www.xbdev.net/physics



Workshop Series: Position-Based Dynamics
(e.g., Verlet System) — 5/5

Advanced
• Implement a simple articulated ragdoll skeleton (i.e., feet,

hands, head) using Verlet particle system
• Mix particle gas/fluid effects with the cloth (e.g., smoke)
• Create hair effects based on the Verlet cloth effect
• Compare the integration with an implicit integrator ap-

proach
• Create a scene with large number of cloth effects (e.g.,

flags, curtains, hair, character clothes) and have them
move and interact based on wind and contacts

Acknowledgements
We would like to thank all the students for taking time out
of their busy schedules to provide valuable and constructive
feedback to make this practical more concise, informative, and
correct. However, we would be pleased to hear your views on
the following:
• Is the practical clear to follow?
• Are the examples and tasks achievable?
• Do you understand the objects?
• Did we missed anything?
• Any surprises?

The practicals provide a basic introduction for getting
started with physics-based animation effects. So if you can
provide any advice, tips, or hints during from your own ex-
ploration of simulation development, that you think would
be indispensable for a student’s learning and understanding,
please don’t hesitate to contact us so that we can make amend-
ments and incorporate them into future practicals.

Recommended Reading
Physics for Game Developers, David M Bourg, Publisher:
O’Reilly Media, ISBN: 978-1449392512

Computer Animation: Algorithms & Techniques, Rick Parent,
Publisher: Morgan Kaufmann, ISBN: 978-0124158429

Code Complete: A Practical Handbook of Software Construc-
tion, Steve McConnell, ISBN: 978-0735619678

Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin, ISBN: 978-0132350884

Game Inverse Kinematics: A Practical Introduction (2nd Edi-
tion) Kenwright. ISBN: 979-8670628204

Kinematics and Dynamics Paperback. Kenwright. ISBN: 978-
1539595496

Game Collision Detection: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1511964104

Game C++ Programming: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1516838165

Computational Game Dynamics: Principles and Practice (Pa-
perback). Kenwright. ISBN: 978-1501018398

Game Physics: A Practical Introduction (Paperback). Ken-
wright. ISBN: 978-1471033971

Game Animation Techniques: A Practical Introduction (Pa-
perback). Kenwright. ISBN: 978-1523210688

www.xbdev.net/physics


	Introduction
	Overview
	Particles
	Integration
	Cloth Interconnection Structure
	Forces
	Contacts and Collisions
	Summary
	Exercises
	Acknowledgements

