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Abstract
This practical focuses on rigid body dynamics (i.e., full 3D object motion and collision reponse using velocity impulses). The
student needs to implement a real-time interactive rigid body simulator (e.g., falling cubes and spheres interacting). We use
velocity impulses for resolving collisions, since impulses are a computationally fast and simple approach for creating rigid
contacts. The practical introduces the theoretical and practical details for implementing an velocity impulse-based rigid body
simulator.
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Introduction
Rigid Body Dynamics The topic of this practical is the
implementation of a real-time 3D rigid body simulator (i.e.,
interaction of objects in a virtual environments). The user
should be able to control the simulation by injecting forces
into the scene while it is running (e.g., through the mouse or
keyboard) - such as, moving objects around so that they in-
teract and visually display collision/contact information. The
rigid body simulator should be implemented using component
programming principles (i.e., flexible set of library functions).

Physics A quick and approximate rigid body physics en-
gine is challenging and valuable. The fundamental principles,
i.e., Newton’s Laws and numerical integration, enable us to
move objects around the environment in a believable manner,
while collision detection allows us to determine if two objects
have intersected. In this practical, we discuss how to proceed
when we have identified that two objects have collided in or-
der to move them apart using impulses. As you might expect,

the solution is to give each intersecting object a nudge in the
direction away from the collision.

Tasks
1. Visually display information, e.g., collision and contact

information within the rigid body simulator, change the
shapes colour depending on the momentum

2. User input (e.g., mouse or keyboard) to control and
move the objects around (i.e., ability to add forces to
push objects)

3. Drop different shapes into the scene (e.g., spheres, cap-
sules, and cubes into the scene and have them interact) -
hence, you need to add collision detection for different
shapes/situations

4. Create a number of test cases to evaluate limitations,
problems (e.g., stacks, sea-saw configuration, rolling-
ball with friction, and objects resting on slopes)

5. Optimized for speed (i.e., large numbers of rigid bodies)
6. Have objects break into sub-objects when a force/mo-

mentum threshold is reached

1. Overview
Principles and Concepts A robust and computationally
efficient physics-simulator is indispensable in interactive real-
time virtual environments, such as games. Without a physics-
based simulator the scene would be static and inflexible (i.e.,
objects would follow repetitive motions and wouldn’t be in-
teractive). In the previous practicals, we have discussed how
to identify when an intersection has occurred, and how to
calculate the data required to resolve an intersection. The data
which we have calculated consists of:
• The contact point - i.e., where the intersection was de-

tected - this is typically inside one or more of the objects.
• The contact normal - i.e. the direction vector along which

the intersecting object must move to resolve the collision.
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• The penetration depth - i.e. the distance along the contact
normal that the intersecting object must move so that it
is no longer intersecting.

Rigid Body Simulator Remember that, at this point, a rigid
body physics engine is still dealing with all the simulated
objects - the new physical state of the simulated objects is
not drawn to the screen until after all the physics update is
complete, so the player will not see any of the intersections
between objects, if they are successfully resolved. The main
features of a rigid body framework:
• Detect if a collision has occurred and calculate the de-

sired contact information (e.g., normal, penetration depth,
and contact point)

• Apply collision responses (e.g., velocity impulses to re-
solve collisions between objects and the environments)

Question The question which is addressed in this practical
is: how do we use this collision data to move the intersecting
objects apart?

A simple solution would be to simply move the objects
along the collision normal by a distance equal to the penetra-
tion depth, by directly changing the position vectors. This is
known as the projection method, and while it will suffice for
a simple simulation, it has some fairly obvious drawbacks re-
lated to the objects’ velocities. If the objects are moved apart
without changing their velocities then they will just continue
along the same path during the next physics update and are
likely to intersect again; alternatively, if the objects are moved
apart and the velocity are set to zero then the simulation feels
very unrealistic, as objects tend to bounce off one another
rather than stop dead on first contact. We clearly need a so-
lution which affects the velocities and/or accelerations of the
objects rather than directly altering the positions.

Algorithms which directly alter the velocities of the in-
tersecting objects are known as Impulse Methods, whereas
algorithms which directly a inject the acceleration of the bod-
ies are known as Penalty Methods. Penalty methods use
spring forces to, in effect, pull the objects away from each
other by affecting the acceleration through Newton’s second
law (F = ma). Impulse methods use instantaneous nudges, or
impulses, to push the objects apart by directly controlling their
velocities. In this practical, we will concentrate on impulse
methods.

Summary

• Projection methods - control the position of the intersect-
ing objects directly.

• Impulse methods - control the velocity of the objects, i.e.
the first derivative.

• Penalty methods - control the acceleration of the objects,
i.e. the second derivative.

2. Impulses
The impulse method allows us to directly affect the veloci-
ties of the simulated objects which have intersected. This is
achieved through the application of an impulse, which can be
thought of as an immediate transfer of momentum between
the two bodies. Impulse is a term defined by classical physics
as the accumulated force applied to a body over a specific
amount of time (it is therefore measured in Newton seconds
Ns). The impulse J is defined in terms of force F and time
period ∆t as:

J = F∆t (1)

We know from Newton’s second law, that F = ma, and we can
also write the acceleration a as the rate of change of velocity v.
Substituting these values into the equation for impulse gives
us:

J = F∆t

= ma∆t

= m
∆v
∆t

∆t

= m∆v

(2)

where m is mass, v is velocity, F is force, a is acceleration,
∆t is the time-step, and J is our impulse. We also know that
momentum is equal to the product of mass and velocity, so an
impulse is equivalent to the change in momentum. Our plan
then is to give colliding objects a nudge, by changing their
velocity by an amount equal to:

∆v =
J
m

(3)

The question then, is how to calculate the impulse J gen-
erated when two bodies collide.

3. Calculating a Linear Impulse
First, we will discuss what we would like to happen to the
velocities of two colliding objects - namely, we want the
bodies to bounce of one another. We will consider the simple
case of two spheres colliding, as shown in the Figure 1 below
- sphere a is moving with velocity va, while sphere b has
velocity vb; the collision normal is n̂. We want to calculate
the impulse J.

The impulse is generated by the velocity at which the
two spheres have collided so we are interested in the relative
velocity of the two objects, which we will label vab. The
component of the relative velocity which caused the collision
is along the normal vector, so we calculate the dot product
(identified as ·) of the relative velocity and the normal:

vab = va− vb vn= vab · n̂ (4)

The velocity along the normal after the collision depends
on the coefficient of elasticity ε . A coefficient of 1.0 means

www.xbdev.net/physics
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Figure 1. Linear Impulse - Single impulse between two
rigid body objects.

the collision will be purely elastic, so all the velocity is trans-
ferred, whereas a coefficient of 0.0 is purely non-elastic, so
no velocity is transferred. A purely non-elastic collision will
result in the two bodies staying together (i.e. no bounce); a
purely elastic collision is a perfect bounce so no damping or
slowing down occurs. Your simulation is likely to require a
number somewhere in between (e.g., 0.7). Quite often differ-
ent object types in a game will have different coefficients of
elasticity which are stored as a member of the object class, in
the same way as the mass is.

The coefficient of elasticity is the factor by which the
velocity before the collision is multiplied to calculate the
velocity after the collision. Hence:

v+n =−εv−n (5)

where vn is the relative velocity along the normal, and the +
and − indicate pre and post values (i.e., before and after the
collision). If we substituting for vn:

(v+a − v+b ) ·n =−ε(v−a − v−b ) · n̂ (6)

Remember, the + and − denote the state of the bodies
after and before the collision respectively. Furthermore, the
negation of the velocity is because we want to push the two
bodies back apart in the opposite direction to their colliding
velocity.

We also need to think about the momentum of the two
bodies. You will remember from the first tutorial in this se-
ries on Newtonian mechanics that the total momentum must
remain constant in any collision. However our plan to re-
solve the collision is to “inject” some momentum into the
system. Hence we need to ensure that the overall additional
momentum is equal to zero, which is achieved by making the
momentum used to nudge the second body, the exact opposite
of that used to nudge the first. This is shown in the equations
below, showing the relationship between momentum before
and after the collision for each body, where J is the injected
impulse along the normal vector n.

mav+a = mav−a + Jn̂

mbv+b = mbv−b + Jn̂
(7)

The injected momentum which is equal and opposite, not
the velocity as that will be affected by the mass of the object
and therefore unequal for differently sized objects. Combining
the last three equations, allows us to solve for the impulse J:

J =
−(1− ε)vab ·n
n ·n( 1

ma
+ 1

mb
)

(8)

where J is a scalar impulse, ε is the coefficient of restitution
(between 0 and 1), vab is the relative velocity, n̂ is the contact
normal, ma and mb are the mass of each body. The impulse J
in turn allows us to calculate the velocities of the two bodies
after the collision:

v+a = v−a +
J

ma
n̂

v+b = v−b −
J

mb
n̂

(9)

So we can now calculate the velocity at which two collid-
ing bodies should move away from one another in a manner
which feels believable, as it is based on Newtonian mechanics,
and which incorporates a “bounciness” factor for different
types of object in the form of the coefficient of elasticity. Re-
member, as ever, that the velocities we are discussing are three
dimensional vectors, i.e., the bodies can move along all three
axes of the simulated world. They can also rotate around all
three axes, so next we need to consider how to account for
rotational elements in collision response.

4. Calculating an Angular Impulse
Let’s add some spin to our two colliding spheres. The angular
velocity of each is ωa, ωb and the radius is ra, rb respectively,
as shown below in Figure 2:

Figure 2. Angular Impulse - Single angular impulse
between two rigid body objects.

In order to realistically add angular motion to a collision
response, we need some more information about the actual

www.xbdev.net/physics



Workshop Series: Rigid Body Systems — 4/6

contact point between the two objects - specifically the ve-
locity of that point on each of the objects. This is the sum of
the object’s linear velocity, and the extra tangential velocity vt
created by the fact that the point is rotating around the object’s
centre. The velocity at a point which is distance r from the
centre on an object turning with angular velocity ω is:

vt = ωr (10)

Recall that rotational velocity is measured in radians, and
there are 2π radians in a full revolution; similarly, the distance
around that revolution is 2πr. So the velocity of the contact
point vc on each object is:

vca = va−ωara

vcb = vb−ωbrb
(11)

Again we need to ensure that angular momentum is conserved,
so:

Iaω
+
a = Iaω

−
a + ra× Jn̂

Ibω
+
b = Ibω

−
b + rb× Jn̂

(12)

The angular momentum of a body is the product of the
angular velocity ω and the inertia tensor I. J is the impulse
which we are calculating and n is the collision normal. Solving
our equations for J, taking into account the angular momen-
tum, leads to a much more complicated looking calculation
for the impulse:

J =
−(1− ε)vab · n̂

n̂ · n̂( 1
ma

+
1

mb
)

+[(I−1
a (ra× n̂))× ra +(I−1

b (rb× n̂))× rb] · n̂

(13)

This allows us to calculate the velocities of the two bodies
after the collision, as well as the angular velocities:

v+a = v−a +
J

ma
n̂

v+b = v−b −
J

mb
n̂

ω
+
a = ω

−
a +

ra× Jn̂
Ia

ω
+
b = ω

−
b +

rb× Jn̂
Ib

(14)

These equations allow us to write an algorithm in C++ to
believably simulate two objects colliding and bouncing off
one another using Newtonian mechanics. Both linear and
angular movement are accounted for, and the elasticity of
the collision is also incorporated.

5. More Complex Shapes
The simple case of two colliding spheres has been used to
illustrate the algorithms employed in impulse method colli-
sion response. The algorithms are perfectly suited to more

complex three-dimensional shapes. In fact, you should notice
that there are no assumptions about the shapes made in the
calculations. When implementing the code, you will see that
all calculations are carried out in three dimensions, so for
example the distance of a contact point from the centre of an
object is a vector containing three values - it does not matter
whether that point is on the surface of a sphere or a more
complex shape. Similarly the relationship between angular
velocity and linear velocity is irrespective of the object shape,
it is based purely on the distance of the point of interest from
the centre of rotation.

6. Implementation
The aim of this practical session is to expand your physics en-
gine to react to collisions between simulated objects. We will
implement the impulse method for both linear and angular mo-
tion. To demonstrate that the collision tests are working, we
will add functionality to the project which bounces colliding
objects off one another.

Listing 1. Rigid Body Impulse (Angular and Linear)
1 // ##
2 // Firstly ..
3 // ##
4 // Recap of common Rigid Body information...
5 class RigidBody
6 {
7 public:
8 // ∗∗∗∗∗ LINEAR ∗∗∗∗∗∗
9 Vector3 m centre; // Center Of Rigid Body

10 float m invMass;
11 Vector3 m linVelocity;
12 Vector3 m forces;
13
14 // ∗∗∗∗∗ ANGULAR ∗∗∗∗∗
15 Matrix4 m invInertia;
16 Vector3 m angVelocity;
17 Quaternion m orientation;
18 Vector3 m torques;
19
20 // ∗∗∗∗∗ COMBINED ∗∗∗∗∗
21 Matrix4 m matWorld;
22 Matrix4 m worldInvInertia;
23 //...
24 // Add essential functions, such as:
25 // AddForce(), Integrate(), GetPosition()..
26 };
27
28 // ##
29 // Secondly..
30 // ##
31
32 // Actual collision impulse implementation method
33 //−−−−−−−−−−−−−−−−
34 //
35 // −(1+e)(relv.norm)
36 // j = ←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−←↩

37 // norm.norm(1/Mass0 + 1/Mass1) + (sqr(r0 x norm) /←↩
Inertia0) + (sqr(r1 x norm) / Inertia1)

38 //
39 //−−−−−−−−−−−−−−−−
40 static
41 void AddCollisionImpulse( RigidBody& c0,
42 RigidBody& c1,
43 const Vector3& hitPoint,
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44 const Vector3& normal,
45 float penetration)
46 {
47 // Some simple check code.
48 float invMass0 = c0.m invMass;
49 float invMass1 = c1.m invMass;
50
51 const Matrix4& worldInvInertia0 = c0.m worldInvInertia;
52 const Matrix4& worldInvInertia1 = c1.m worldInvInertia;
53
54 // Both objects are non movable
55 if ( (invMass0+invMass1)==0.0 ) return;
56
57 Vector3 r0 = hitPoint − c0.m centre;
58 Vector3 r1 = hitPoint − c1.m centre;
59
60 Vector3 v0 =
61 c0.m linVelocity + Cross(c0.m angVelocity, r0);
62 Vector3 v1 =
63 c1.m linVelocity + Cross(c1.m angVelocity, r1);
64
65 // Relative Velocity
66 Vector3 dv = v0 − v1;
67
68 // If the objects are moving away from each other we dont←↩

need to apply an impulse
69 float relativeMovement = −Dot(dv, normal);
70 if (relativeMovement < −0.01f)
71 {
72 return;
73 }
74
75 // NORMAL Impulse
76 {
77 // Coefficient of Restitution
78 float e = 0.0f;
79
80 float normDiv = Dot(normal, normal) ∗
81 ( (invMass0 + invMass1) +
82 Dot( normal,
83 Cross( Transform( Cross(r0, normal),←↩

worldInvInertia0), r0) +
84 Cross( Transform( Cross(r1, normal),←↩

worldInvInertia1), r1) ) );
85
86 float jn = −1∗(1+e)∗Dot(dv, normal) / normDiv;
87
88 // Hack fix to stop sinking − bias impulse proportional to←↩

penetration distance
89 jn = jn + (penetration∗1.5f);
90
91 c0.m linVelocity += invMass0 ∗ normal ∗ jn;
92 c0.m angVelocity += Transform(Cross(r0, normal ∗ jn),←↩

worldInvInertia0);
93
94 c1.m linVelocity −= invMass1 ∗ normal ∗ jn;
95 c1.m angVelocity −= Transform(Cross(r1, normal ∗ jn),←↩

worldInvInertia1);
96 }
97
98 DBG CHECKVECTOR( c0.m linVelocity )
99 DBG CHECKVECTOR( c0.m angVelocity )

100 DBG CHECKVECTOR( c1.m linVelocity )
101 DBG CHECKVECTOR( c1.m angVelocity )
102
103 // TANGENT Impulse Code
104 #if 1
105 {
106 // Work out our tangent vector, with is perpendicular
107 // to our collision normal
108 Vector3 tangent(0,0,0);
109 tangent = dv − (Dot(dv, normal) ∗ normal);
110 tangent = Normalize(tangent);
111
112 float tangDiv = invMass0 + invMass1+
113

114 Dot( tangent,
115 Cross((Cross(r0, tangent) ∗ worldInvInertia0), r0←↩

) +
116 Cross((Cross(r1, tangent) ∗ worldInvInertia1), r1←↩

)
117 );
118
119 float jt = −1 ∗ Dot(dv, tangent) / tangDiv;
120 // Clamp min/max tangental component
121
122 // Apply contact impulse
123 c0.m linVelocity += invMass0 ∗ tangent ∗ jt;
124 c0.m angVelocity += Transform(Cross(r0, tangent ∗ jt),←↩

worldInvInertia0);
125
126 c1.m linVelocity −= invMass1 ∗ tangent ∗ jt;
127 c1.m angVelocity −= Transform(Cross(r1, tangent ∗ jt),←↩

worldInvInertia1);
128 }
129 #endif
130 // TANGENT
131
132 DBG CHECKVECTOR( c0.m linVelocity )
133 DBG CHECKVECTOR( c0.m angVelocity )
134 DBG CHECKVECTOR( c1.m linVelocity )
135 DBG CHECKVECTOR( c1.m angVelocity )
136 }// End AddCollisionImpulse(..)

7. Summary
In this practical, we have introduced the concept of collision
response with particular focus on impulse methods, i.e. a
method which directly affects the velocities of colliding ob-
jects in order to resolve that collision.

8. Exercises
This practical only gives a brief taste of collision impulse
principles. As an exercise for the student to help enhance their
understanding:

Intermediate
• Disable tangential impulses and see what happens
• Implement a large scene with a vast number of bodies

interacting (e.g., >100)
• Create stacks of rigid body objects
• Do items come to a complete rest (e.g. jiggling?)

Advanced
• Try and construct impulse constraints to join bodies to-

gether
• Implement a scene with a vast assortment of shapes (e.g.,

identify and resolve performance bottlenecks and exploit
technological speed-ups, such as the GPU and space
partitioning)

• Construct stacks of objects and a controllable physics-
based vehicle (e.g., box with four wheels and drive it
around the scene)
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Figure 3. Test Cases - Example set of test configurations.
(a) Rigid body resting on a surface, (b) stack of objects, (c)
sea-saw configuration, (d), single tall stack, (e) wall, and (f)
objects on slopes (i.e., friction and rolling motion).

feedback to make this practical more concise, informative, and
correct. However, we would be pleased to hear your views on
the following:
• Is the practical clear to follow?
• Are the examples and tasks achievable?
• Do you understand the objects?
• Did we missed anything?
• Any surprises?

The practicals provide a basic introduction for getting
started with physics-based animation effects. So if you can
provide any advice, tips, or hints during from your own ex-
ploration of simulation development, that you think would
be indispensable for a student’s learning and understanding,
please don’t hesitate to contact us so that we can make amend-
ments and incorporate them into future practicals.
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