
Workshop Series, March 2014
The Path To Working Smarter Not Harder

Workshop Series: Fur & Hair Shells
Benjamin Kenwright1*

Abstract
This practical focuses on real-time fur & hair effects using shells. The student needs to implement a real-time dynamic
interactive fur simulator (e.g., add hair/fur effects to 3D models that bounces around). We present a technique for representing
high detailed geometry using low-poly slicing. The complex geometry, i.e., fur and hair in this case, is created using
layers, also called shells. Mapping textures onto these shells produces a visual representation of the high detailed model.
These textured quads are rendered at relative offsets to the model’s surface. The more slices give a more detailed visual
representation of the model. This method enables us to create fur effects that run in real-time with high visual detail. In this
practical, we show various enhancements to the basic shell method to generate more exotic, dynamic, and realistic fur effects
(e.g., springs and forces).

Keywords
Fur, Hair, Shells, Soft Bodies, Interactive, Real-Time, Rigid Body Dyanmics, Rotation, Impulses, Collision Detection, Rigid
Body Objects, Particles, Constraints, Classical Mechanics, Verlet

1 Workshop Series (www.xbdev.net) - Benjamin Kenwright

Contents

Introduction 1

1 Overview 1

2 Implementation 2

2.1 Physics . 2

3 Summary 2

4 Exercises 2

Acknowledgements 2

Introduction
Hair & Fur Effects The topic of this practical is the imple-
mentation of a real-time 3D hair & fur simulation effect (i.e.,
interaction and control of a hair/fur effect in virtual environ-
ments). The user should be able to interact with the simulation
while it is running (e.g., through the mouse or keyboard) to
control the objects - such as, hair length and moving objects
around so that they interact and visually display hair move-
ment. The hair/fur simulator should be implemented using
component programming principles (i.e., flexible set of library
functions).

Tasks
• Visually display hair/fur effects on simple 3D models
• User input (e.g., mouse or keyboard) to control and move

the objects around (i.e., ability to add forces to push
objects)

• Drop different shapes into the scene and control the fur
effect in real-time (e.g., length/colour/stiffness)

• Mix the shell technique with a mass-spring framework
to create life-like dynamic movement (e.g., either spring-
damper or verlet-based method)

Figure 1. Shell Fur & Hair Effects - Projecting multiple
instances of the textured surface along the normal to create a
computationally efficient and aesthetically pleasing visual
fur/hair effect.

1. Overview
Principles and Concepts A robust and computationally
efficient fur & hair effect is indispensable in interactive real-
time virtual environments, such as games. A realistic effect
that is computationally efficient and straightforward brings
an otherwise static and in inflexible scene to life (i.e., objects
would follow repetitive motions and wouldn’t be interactive).

Dynamic Fur & Hair Shells We can expand the underpin-
ning fur & hair shell principle to encapsulate basic dynamic
behaviour by:
• Apply a position-based constraint system to the shell

layers to create interactive fur movement (i.e., moves
with the model or in response to forces, such as wind)

• Expand the fur & hair effect to create different effects
(e.g., thick, think, and long) - e.g., hair that changes over

Workshop Series: Fur & Hair Shells — 2/4

time or grows

Onions The shells are built up like layers on an onion to
make up the model. The shells let us achieve high detail ob-
jects using a reduced poly model. This method demonstrates
excellent real-time results. Starting with a fully transparent
texture, noise pixels are scattered across the image, this image
is then wrapped across shells which are along the normal of
the surface. Varying the number of shells/layers shown in
Figure 3 demonstrates varying realism using a ‘fixed’ image.
Following on from a constant ‘fixed’ shell, we alter the shell
so that the number of ‘hair’ pixels is reduced as you move fur-
ther out towards the outer layers, shown in Figure 4. Fur can
be combined with texture decal information to create textured
fur effects, as shown in Figure 1.

Figure 2. Shell Concept - Projecting multiple instances of
the textured surface along the normal.

Figure 3. Shell Numbers - Varying the number of shells,
offset, and distance apart can create a variety of different
effects.

2. Implementation
For the practical exercise, we give you an uncomplicated
OpenGL shader program that demonstrates Shelling. The
program does:

1. Takes pre-created image and applies it to a basic shape
(i.e., cube)

2. Alpha is enabled and alpha values less than 0 aren’t
written to the z-buffer

3. Culling is disable to draw the front and the back of the
texture (possibly disable for the final effect)

4. Shells are a fixed distance with fixed texture mapped
across them

Output Runs at real-time frame-rates and is ideal for games.
Produce excellent visual effects. Can vary the fur types e.g.
fine, thick, clumpy, and messy. Simple and intuitive, can be
combined with textures to create textured fur. Different mod-
els for the fur pattern across the layers. Further work is to add
fins and springs between the various layers to give an inter-
active fur effect. Create grass, tree effects. Alternative noise
algorithms to generate shell images compare and investigate.

2.1 Physics
For the practical, you need to expand the basic shell imple-
mentation to make it a dynamic fur/hair effect. The tasks
are in two parts, modifying the graphical implementation to
include additional features (e.g., loading in models and tex-
ture/fur patters) and the physics-based part for synthesizing
hair motion:

Graphics
1. Try different textures
2. Randomly generate a texture (i.e., lots of noise particles

to create hair and apply it to the shells)
3. Vary the alpha (i.e., higher layer shells are with different

alpha compared to lower ones)
4. Load in different models (obj or ply) and apply the

technique
5. Texture the fur (i.e., one texture for the colour informa-

tion and one texture for the alpha hair effect)
6. Experiment with hair length, thickness, colour, density,

patterns

Physics/Movement
1. Oscillate the layers (e.g., use sin/cosine motion so they

gradually oscillate and move)
2. Connect layers together with verlet distance constraints

so the hair and fur bounces around as it moves
3. Apply the hair/fur effect to different scenes (e.g., a car

or a characters head)

3. Summary
We have introduced an uncomplicated real-time fur & hair
simulator for interactive dynamic scenes. Combining basic
shells with springs and particles enables us to create an in-
teractive effect suitable for real-time environments, such as
games.

4. Exercises
This practical only gives a brief taste of fur & hair effects. As
an exercise for the student to help enhance their understand-
ing:

Intermediate
• Implement a scene with other shell based effects, such

as, grass
• Experiment with creating different types of hair / fur

effects (e.g., mixing shells with strands of hair)
• Explore inter-hair shadow effects

www.xbdev.net/physics

Workshop Series: Fur & Hair Shells — 3/4

Figure 4. Details - Projecting multiple instances of the textured surface along the normal.

Figure 5. OpenGL Shader Shell Implementation -
Uncomplicated OpenGL implementation of shelling - i.e., a
texture mapped onto multiple surface shells. The shape is a
simple cube with shells of a fixed distance projected outwards
at a fixed displacement based on the triangles normal. (a) A
rendered cube, and (b) the same cube rendered with shells
(i.e., 50 shells with fixed alpha and fixed distance apart).

Acknowledgements

We would like to thank all the students for taking time out
of their busy schedules to provide valuable and constructive
feedback to make this practical more concise, informative, and
correct. However, we would be pleased to hear your views on
the following:
• Is the practical clear to follow?
• Are the examples and tasks achievable?
• Do you understand the objects?
• Did we missed anything?

Figure 6. Shell Concept - Projecting multiple instances of
the textured surface along the normal.

• Any surprises?
The practicals provide a basic introduction for getting

started with physics-based animation effects. So if you can
provide any advice, tips, or hints during from your own ex-
ploration of simulation development, that you think would
be indispensable for a student’s learning and understanding,
please don’t hesitate to contact us so that we can make amend-
ments and incorporate them into future practicals.

Recommended Reading

NVIDIA White Paper: Fur (using Shells and Fins),
http://developer.download.nvidia.com/
SDK/10/direct3d/Source/Fur/doc/FurShellsAndFins.pdf,
February 2007

Real-time Fur over Arbitrary Surfaces, Jerome Lengyel, Emil

www.xbdev.net/physics

Workshop Series: Fur & Hair Shells — 4/4

Praun, Adam Finkelstein, Hugues Hoppe

Real-time Fur Rendering For Short Haired Creatures, Adam
Lake, Kiefer Kuah

Fur Rendering and Dynamics Using Discrete Shells, JC Chong

Computer Animation: Algorithms & Techniques, Rick Parent,
Publisher: Morgan Kaufmann, ISBN: 978-0124158429

Code Complete: A Practical Handbook of Software Construc-
tion, Steve McConnell, ISBN: 978-0735619678

Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin, ISBN: 978-0132350884

Game Inverse Kinematics: A Practical Introduction (2nd Edi-
tion) Kenwright. ISBN: 979-8670628204

Kinematics and Dynamics Paperback. Kenwright. ISBN: 978-
1539595496

Game Collision Detection: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1511964104

Game C++ Programming: A Practical Introduction (Paper-
back). Kenwright. ISBN: 978-1516838165

Computational Game Dynamics: Principles and Practice (Pa-
perback). Kenwright. ISBN: 978-1501018398

Game Physics: A Practical Introduction (Paperback). Ken-
wright. ISBN: 978-1471033971

Game Animation Techniques: A Practical Introduction (Pa-
perback). Kenwright. ISBN: 978-1523210688

Figure 7. Shell Concept - Projecting multiple instances of
the textured surface along the normal.

www.xbdev.net/physics

	Introduction
	Overview
	Implementation
	Physics

	Summary
	Exercises
	Acknowledgements

