PROGRAMMING |

s/

Retro Web-Based
Game Programmin
Second Edition

Kenwright

Copyright © 2020 Kenwright
All rights reserved.

No part of this book may be used or reproduced in any manner what-
soever without written permission of the author except in the case of
brief quotations embodied in critical articles and reviews.

BOOK TITLE:

Retro Web-Based Game Programming
Second Edition

ISBN-13: 979-8-642-07831-0

The author accepts no responsibility for the accuracy, comp

notice or to withdraw the information temporaril

Edition: 003004020

Table of Contents

Preface Xi
1 Introduction 1
1.1 Internet 1

1.2 Web Browsers (simple web pages to complex interactive video
game solutions)o
1.3 Compatibility (Chrome, Firefox, 360 Secure Browser, ..) . . .
1.4 2D Games (HTML/CSS)
1.5 Document Object Model (DOM)
1.5.1 Recusing the Hierarchy
1.6 NoCanvas.
1.7 No Engines (Native Javascript)
1.8 Libraries (jQuery and Ajax)
1.8.1 Example, Waiting for the DOM to be loa

2 Game Mechanics 7
2.1 Whatisagame? 0L ... 7
2.2 Winorlose 7

2.2.1 Keeping players coming back for . R 4
2.2.2 Fun Factor agm. ¥ 8
2.3 Types of games (mazes, 8 B T 8
2.4 Essential Concepts . &o 8

3 CSS and HTML 11
3.1 Visual aspects . N e e 11
3.2 HTML is the cont . - - 12
3.3 Classes and C R T 12

3.3.1 . O Y 13
3.4 CSS Ani R 13
3.4.1 mbol /.. ... 13
3.4.2 Qkeyfra Rule 14
3.5 Position (Relative ed, Absolute) 14
3.5.1 CSS Position and Helper Properties 15
3.5.2 Static 15

vii

Table of Contents

3.5.3 Relative 16
3.5.4 Absolute. L 17
355 Fixed 18
3.5.6 Sticky 19
3.6 Transforms 19
3.7 Position (Translation) and Size 19
3.8 Rotation oo 20
3.8.1 Rotation around (predefined point) 20
3.8.2 Direction and Rotation 21
3.9 Depth (Z-Index) 21
3.10 Sprite Sheets L 21
3.10.1 Showing Part of an Image 21
3.10.2 Animating the Sprite Sheet 22
3.11 CSSor Javascript L. oL 22

4 Javascript Basics 23
4.1 Creating CSS elements on the fly (CreateEleme 23
4.2 Generate HTML for the page (document.wri 24

4.3 Setting/Getting CSS Style information in

4.4 Variables let, var (or const)4 . 500

4.5 Types of Variables
451 null 0000 ? Y _ 28
4.5.2 undefined WL 28

453 boolean WA 28
4.5.4 mnumber C . e ... oo 28
4.5.5 string P < 28
4.5.6 symbol.0 h . 0oL 29
4.5.7 R 29
4.6 typeof @i e 29
4.7 Mutable or Lma ble Data Types, 30

viii

Table of Contents

4.11.4 3. Singleton using a function
4.11.5 4. Classes (class keyword)
4.12 use strict;
4.13 debug assert (console)
4.13.1 Console.log isn’t available?
4.14 Visually Debugging
4.15 Creating Elements 0 .
4.16 Debug Draw e
4.17 Debug Output Lo o
4.18 Drawing Lines without Canvas
4.19 Userinput oL
4.19.1 Mouse input
4.19.2 Keyboard Input
4.19.3 Reacting to Key Events
4.20 Timer Events (Timing Information),
4.21 Events and Elementso 000 4.
422 Game Loop AT
4.22.1 requestAnimationFrame vs setInterval (or setTimeout) .
4.22.2 Document Object Model (Ready?) & 5.V . .
4.22.3 Timing Problems 4.
4.23 Rotating Elements to Face a Particular Direction & . . . Tn . .

Javascript Advanced

5.1 Data (JSON) e
5.1.1 Javasript JSON helper functionsol

5.2 Pausing and Continuing Animations (OQverridings€SS)

5.3 Rotating and Animating (with CSS) . T4 . .20 o . ..

5.4 Rotating ProgrammaticallyU .. 00 ...

5.5 Memory Management . .« N0 .00

Collisions and Intersections

6.1 Collision vs Intersection . o. 4. o s 0 . . L L L L L
6.2 Elements On Screen (Screen-Box-Area) ™.
6.3 Mouse-ElementfCheéck, (Pointin Box)
6.4 Axis-Aligned Bounding Box (AABB)
6.5 Sphere-Sphere L . L4
6.6 Shape(Hierarchies/Decomposition
6.7 Problems oL

Simulations and Physics

7.1 Newton’s Laws (Basics)
7.2 Relationship between position, velocity and acceleration
7.3 Forces to Control Movement

46

55
55
95
55
56
56
58
58

59
60
60
61

ix

Table of Contents

10

11

12

13

14

15

7.4 Vectors (2-dimensional movement) 61
7.5 Time Step (Fixed) 63
7.6 Problems 64
Menus 65
8.1 Press Start (or Splash Screen) 65
8.2 Popup news (toaster, queue, popup dialog or information) . . . 65
8.3 BasicMenu 66
8.4 Advanced Menu System 68
Projects 69
Project: Duck Shoot (Extreme) 71
10.1 Game Mechanics

10.2 Implementation
10.3 Enhancements

Project: Catapult (Sprout)
11.1 Game Mechanics
11.2 Implementation
11.3 Enhancements

Project: Ship Scroller
12.1 Game Mechanics
12.2 Implementation
12.3 Enhancements

Project: Breakout
13.1 Mechanics A 105
13.2 Implementationf. . . &. 105

Project: Tile
14.1 Mechanics . . . o w . . . 115

Preface

About this Book

As anyone who’s ever spent hours hunched over Asteroids or Candy Crush
can attest, there’s something special about retro video games. Sure they’re
fun, but they can also be absorbing, frustrating, challenging and complex.
Retro Web-Based Game Development is an introductory text to help
you get started developing your own interactive 2D games for the web.4The
book explains various concepts, such as, advanced CSS animation techiniques
and popular collision detection algorithms to enable you to create a vari-
ety of video game styles (board games to scrolling shooters). .Onexthing is
abundantly clear, game-based projects are an effective ways £o nurture your
web-based skills - creativity, critical thinking, communication and collabora-
tive thought. Hence, this book is crafted to guide you' threugh interactive
web-based techniques using retro game projects, packed withhreSources for
gaming gurus and hobbyists alike.

The Retro Web-Based Gaming Book contains:

e Complete Game Projects
e Coding Examples

e Debugging Advice

e Game Mechanics

e Collision Detection

e Physics

e User Interfaces

e Optimization Tips

Retro Web-Based Game Development is more than just creating
games - it also teaching youthe mechanics and principles to devel-
oping interactive and engaging browser solutions

xi

Preface

Who is this Book for?

This book is designed for anyone who wants to get started developing interac-
tive and dynamic web pages (using game-based examples as a spring-board).
You will learn how to design and build fully-responsive and interactive web-
based games that are both fun and dynamic (and extensible). The book
introduces basic concepts and features, from responsive web design through
to the latest Javascript, HTML and CSS technologies.

Examples: Academics The book would provide insightful examples and ma-
terial to help teachers, instructors or anyone involved in education and
learning to develop bespoke interactive learning solutions (e.g., game-based
projects to teach students mathematics, physics or programming principles
in a creative and fun way)

Hobbiests The book offers multiple projects to help beginners master the
topic of web technologies by implementing and enhancing simple self con-
tained retro games (fun factor).

Web-Artists/Designers The book provides information and insights on
how to stretch what the capabilities of websites, £.g.," programmatically
alter the content on the fly, interact and exploré web’ content in“new)amnd
interesting ways and more.

This book will open your mind to new ideas, while giving youw the opportunity
to acquire new skills and extensive knowledge. The material is practical based
enabling you to take a hands-on approach to creating demos/and working
solutions that you can use in the real-world,(i.e., not just theory).

Why Learn Retro Game Programming?

One of the best parts of this book, is that developing your own retro games
is incredibly fun. You’llfcertainly run into\the same pitfalls that you face in
regular development:times of frustration, nothknowing how to proceed, and
even feeling like you have to fightwagainst/the tools you’re using. However,
developing retro games with(HTML/CSS/Javascript lends itself to an enter-
taining development process.»You get to play and test your game as you go,
and there’s’ nothing like the feeling of finally having enough of your game
made thiat you get to share it with others (through a browser).

Hopefully,after this beok, you’ll be convinced that retro game development
with webtechnologies is for you. If you’re wondering where to start, this book
is for you. “We'’ll take' you through the core concepts and provide practical
(simplified) examplés for you to work through. It does have a somewhat
steep learning curve, but it is incredibly flexible and powerful, and learning
problem solve and develop various solutions with it will enable you to create
practically any game you’d ever want to.

xii

Prerequisites

While the material in this text is introductory, it assumes you to have some
background programming knowledge (for example the ability to understand
basic mathematical concepts and conditional logic). All of the demos and
examples are explained, not to mention, available for you to run and test out.
So they could be used in conjunction with other learning material (e.g., while
you're learning Web-Design, Javascript, HTML and CSS).

Book Text Convention

Code samples will be given in blocks (highlighted and easy to identify and
copy/type out):

var a = 2; // assign variable “a° the value 2
let b 3;

// This is a one line comment
/*
This is a multi-line comment

*/

Also throughout the book, various tips and commen sizing

are highlighted:

Tip: Get into the habit of commenting your scripts.

Retro Gaming with Web-Bas CSS, Javascript).

xiii

Introduction

This Chapter provides an introduction to web-based development techunolo-
gies. The history and the advantages of web-based development, béth for
video games, and other interactive applications.

1.1 Internet

The internet has revolutionized your world both with its téchnical, capabili-
ties and the ability to connect with billions of other useérs across the world.
While the majority of the text focuses on browser based wideogane solu-
tions, the internet is so much more. Especially, now that imternet access
is becoming popular on mobile phones (mobilésapps), not to mentions, the
internet-of-things (IoT), social media and streamingreontent.

1.2 Web Browsers (simple web pages to complexiinteractive
video game solutions)

The web, in terms of user experience and functionality has changed enor-
mously over the past decade, thanks to HIML5 and CSS3 and the evolution
of web browsers (technologie8).

The advantages of browser based ‘solutions, such as, games, offers greater
reach, accessibility from multiple device types and benefits from connecting
with search, socialdmedia, email and affiliates. The shackles of limited fea-
tures, user expegience (UX) and functiondlity has disappeared. The combina-
tion of new web technologies, and extended Javascript resources, means you
have the ability to tap into your device features, like location, camera, not to
mention, the ability to workioffline, so you can deliver interactive games with
great user-experience - all'via a web browsers.

As a simple example vibrate feature on a mobile phone:

window.navigator.vibrate(200); // vibrate for 200ms

Chapter 1 Introduction

window.navigator.vibrate([100, 30, 100, 30, 100, 30, 200, 30,
— 200, 30, 200, 30, 100, 30, 100, 30, 100]); // Vibrate 'SOS
< ' in Morse.

In Javascript, if your device supports the vibrate hardware and is enabled in
your browser, then the Navigator.vibrate(..) method pulses the vibration
hardware on the device. Of course, if the device doesn’t support vibration,
this method has no effect.

1.3 Compatibility (Chrome, Firefox, 360 Secure Browser, ..)

Always worth testing your retro games on different browsers. Cross browser
testing important! If your retro game is not tested and debugged on differ-
ent platforms and browsers, it won’t work the same on all of them, causing
inconvenience and sadness to your players.

While you might thing you’ll need to download and install every single browser
since the beginning of time - a good place to start testing for eross browser
issues, is to lookup which browsers support which features.

For example, if you want to check your current browser’s capabilities) there
are automated solutions available.

Online tools, such as, https://html5testcom/) test which featurés your
browser support and evaluating your browser’s ranking.

1.4 2D Games (HTML/CSS)

Today people are overloaded with content and,there is a trend for ever more
realistic interactive 3D graphics, so you might béwwondering if 2D games
are out dated? Boring? NO! A 2D gamesan be‘just as fun, engaging and
exciting as a high-end 3D<6mmercial game.

Previously, web develepers relied mostly on Flash to create and deploy games
and animations ondthe web - an_expensive undertaking. Now with the latest
HTML and CSS web-based games and animations can be both powerful and
attractive while being easy to develop. As you’ll learn in this book, it’s
relatively painless to, create stunning interactive games with only HTML,
CSS, and JavaScript (in, fact it’s fun).

1.5¢"Document Object Model (DOM)

The Document Object Model (DOM) is one of the most popular web-
based concepts you néed to master. The DOM is efficient (in terms of mem-
ory), and easy t0 work with, offering amenities like click event handlers and
visual elements It’s relatively straightforward to create/remove and access
objects in the DOM hierarchy (e.g., both through html and dynamically using
Javascript).

1.5 Document Object Model (DOM)

For example, this is what a simple HTML web page DOM might look like:

document
I
+-root <html>
I
+-- element <head>
+- element <title>
+- text "my title"

+- element <body>
+- element <hl>
+- text "a heading"
+- element <a>
+- text "link text"

The equivalent html file for this DOM hierarchy would look like:

<html>
<head>
<title>my title</title>
</head>
<body>
<hi>a heading</hi>
<a>link text
</body>
</html>

You need to notice certain elem
root. You'll always have acces i eans, you'll always
be able to search and access any g ierarchy. You’ll give your

e createEleme
e appendChild(..
e removeChild(...)
e getElementById(...

Example (Adding element to the DOM hierarchy)

Chapter 1 Introduction

var node = document.createElement("div"); // Create<div> node

node.id = "myid"; // set the unique ID for the node

node.className = "someClass"; // associate the node with a class

document.body.appendChild(node); // add the node element to the
<~ DOM hierarchy

Example (Removing element DOM hierarchy)

// any time we want the element, we can find it using its unique

— ID
var mydiv = document.getElementById("myid"); // Get the <div>
— element

mydiv.parentNode.removeChild(mydiv); // Remove the element if
<~ we need to from the hierarchy

1.5.1 Recusing the Hierarchy

Each element in the hierarchy is connect (i.e., it knowswho 1t§ parent and
how it’s children are). Using the parentNode dnd ehildNodes member
variables you can at any time crawl or recursef over the Document Object
elements.

As you become more familiar with the DOM API, wou’ll notice there is a
parentNode and a parentElement accessor. What is thedifference? The doc-
umentation says that parentElement is ounly for listing connected elements ,
however, you might ask, can objects'in the DOM hierarchy not be elements?
The parentElement property returns the element parent, while parentNode
returns any node parent. These properties are usually the same: they both
get the parent.

With the one exception of document .documentElement:

alert(document.documentElement.paxrentNode); // document
alert(document.documentElement.parentElement); // null

Similarly there are child Elements and childNodes accessor functions.

1.6¢ No.Canvas

The games and concepts in this text utilize the Document Object Model
(DOM) and browser £apabilities (leverage CSS/HTML features). You won’t
be using canvas. The HTML canwvas element is for low-level graphical con-
trol, such as, pixel-by-pixel drawing. Canvas offers finer grained control over
rendering but comes at the cost of having to manage every detail manually,
like hover state animations. Your biggest reason to use canvas is when you

1.7 No Engines (Native Javascript)

start to develop detailed graphical effects (on the fly) in the browsereded.
However, for the retro games you’ll develop here, you’ll not need canvas,
and will use graphical components like gifs and jpgs for visual details not to
mention style sheet animations/effects (CSS).

1.7 No Engines (Native Javascript)

The focus of this book is on developing interactive retro games from the
ground up using Native Javascript/CSS/HTML, and not external game en-
gines/pre-written game-frameworks. You’'ll learn about the low-level me-
chanics, collision detection algorithms and optimization techniques - imple-
ment them as you need them for your game.

This provides you with a more comprehensive understanding, not to mention
more flexibility (and power).

1.8 Libraries (jQuery and Ajax)

AJAX is an acronym standing for Asynchronous JavaScript and’' XML
and this technology will help you load data from servers withouta browser
page refresh (e.g., upload and download high score data on the, fy without
needing to refresh the page). As you start to master game development with
web-technologies, you’ll find Ajax an invaluable tool for any online commu-
nication (multiplayer or downloading/uploading information). The 4 JA X
syntax (when used with jQuery) is just Javascript (and is greatly simplified,
e.g., an AJAX call can be a single line - with jQuery):

$.ajax({ url: "test.html", success: function(){/+do stuff herex/

— P;

JQuery is a great tool which providesgayrich set of methods €0 develop next
generation web application (compaet syntax).

While not covered in this book; it’s still worth trying out other libraries and
frameworks, once you’ve mastered the/basic gaming concepts. You might
want to explore integrating some of your game programming concepts with
React and Angular,

The important thifig to remember when developing your games, is that you
understand the€oncepts, and can implement them either in vanilla Javascript
or another language (i.ex, won’t be/dependent on a specific library like jQuery).

1.8.1 Example, Waiting for;the DOM to be loaded
The jQuery way:

$ (document) .ready (() => {
//...

Chapter 1 Introduction

b

The Javascript/DOM way:

document .addEventListener ("DOMContentLoaded",

//. ..
b

O =>{

