
KENWRIGHT

INTRODUCTION TO
COMPUTER GRAPHICS
AND THE VULKAN API

TECHNICAL BOOK

DRAFT REVISION DRAFT REVISION

D
RA
FT

Introduction to Computer Graphics and the Vulkan API Kenwright
.

DRAFT REVISION DRAFT REVISION

D
RA
FT

Copyright © 2017 Kenwright
All rights reserved.

No part of this book may be used or reproduced in any manner whatsoever without written permission of
the author except in the case of brief quotations embodied in critical articles and reviews.

BOOK TITLE:
Introduction to Computer Graphics and the Vulkan API
ISBN-13: 978-1-548-61617-5
ISBN-10: 1-548-61617-6

The author accepts no responsibility for the accuracy, completeness or quality of the information provided,
nor for ensuring that it is up to date. Liability claims against the author relating to material or non-material
damages arising from the information provided being used or not being used or from the use of inaccurate
and incomplete information are excluded if there was no intentional or gross negligence on the part of the
author. The author expressly retains the right to change, add to or delete parts of the book or the whole
book without prior notice or to withdraw the information temporarily or permanently.

Revision: 035628082017

First published, July 2017

DRAFT REVISION DRAFT REVISION

D
RA
FT

4

DRAFT REVISION DRAFT REVISION

D
RA
FT

Contents

1 Introduction & Overview 15
1.1 Getting Started . 15
1.2 Computer Graphics . 15
1.3 Aim of this Book . 16
1.4 Prerequisite (Setting-up Vulkan) . 17
1.5 Summary . 18

2 Background (OpenGL and Vulkan) 19
2.1 Introduction . 19
2.2 History of Vulkan . 21
2.3 11 Steps . 22
2.4 Naming Convention . 24
2.5 Exercises . 24

2.5.1 Chapter Questions . 24

3 Mathematics 26
3.1 Introduction . 26
3.2 Vector . 26

3.2.1 What is a Vector? . 26
3.2.2 Vectors and Points . 27
3.2.3 Vector3 . 27
3.2.4 Dot Product . 28
3.2.5 Cross Product . 29
3.2.6 Reconstructing Angles from Positions 30
3.2.7 Plane Equation . 30

DRAFT REVISION DRAFT REVISION

D
RA
FT

6

3.2.8 Support Function . 31
3.3 Matrix . 31

3.3.1 Why Matrices? . 31
3.3.2 Column or Row Major . 31
3.3.3 A 4x4 Matrix . 32
3.3.4 Creating a Matrix . 33

3.3.4.1 Identity Matrix . 34
3.3.4.2 Translation Matrix . 34
3.3.4.3 Scale Matrix . 35
3.3.4.4 Rotation Matrix . 35

3.3.5 Matrix-Matrix Multiplication . 36
3.3.6 ‘Pure’ Rotation . 37

3.3.6.1 Orthogonal Matrices (Useful-Axis) 37
3.3.6.2 Transpose and Inverse . 37

3.3.7 Transforming a Vector . 37
3.3.7.1 Little Test . 38

3.3.8 Matrix Inversion . 39
3.4 Quaternion . 41

3.4.1 Why Quaternions? . 41
3.4.2 Unit-Quaternion (Always) . 41
3.4.3 Creating a Quaternion . 41

3.4.3.1 Quaternion from Axis-Angle 42
3.4.3.2 Quaternion to Axis-Angle 42
3.4.3.3 Quaternion to Matrix . 43
3.4.3.4 Quaternion from Matrix 43

3.4.4 Quaternion-Quaternion Multiplication 45
3.4.5 Quaternion Inverse (Conjugate) . 46
3.4.6 Transform a Vector by a Quaternion 46

3.5 Summary . 47
3.6 Exercises . 47

3.6.1 Chapter Questions . 48

4 Graphical Principles 49

DRAFT REVISION DRAFT REVISION

D
RA
FT

7

4.1 Basic Types . 49
4.2 Transforms . 50

4.2.1 Homogeneous Coordinates (or Projective Coordinates) 52
4.2.2 Normalized Device Coordinates (NDC) 53
4.2.3 Eye Coordinates . 54
4.2.4 Projection . 55

4.2.4.1 Orthogonal . 56
4.2.4.2 Perspective . 56

4.2.5 Camera (LookAt) . 59
4.3 Primitives . 61

4.3.1 Backface Culling (Clockwise/Counter-Clockwise) 62
4.4 Data/Geometry . 63
4.5 Drawing Principles . 64
4.6 Programmable Graphics & Shaders . 64
4.7 Exercises . 67

4.7.1 Chapter Questions . 67

5 Shaders 70
5.1 Introduction . 70

5.1.1 Anatomy of Shaders . 72
5.2 Link between Vulkan and Shaders . 74
5.3 Linking data to Uniforms . 75

5.3.1 Qualifiers . 76
5.3.2 Uniforms . 76
5.3.3 Varying . 76

5.4 Developing Shaders . 77
5.5 Summary . 79
5.6 Exercises . 79

5.6.1 Chapter Questions . 79

6 Programming (11 Steps) 81
6.1 (Step 1 & 2) Initializing Vulkan (Instance Creation) 84
6.2 Debugging . 87

DRAFT REVISION DRAFT REVISION

D
RA
FT

8

6.3 (Step 3) Device(s) . 90
6.4 (Step 4) Swap-Chain . 92
6.5 (Step 5) FrameBuffer & Render-Pass . 95
6.6 (Step 6) Command-Buffers . 100
6.7 Buffers . 103
6.8 Memory Allocations . 104
6.9 (Step 7) Vertex Buffer (Data) . 105
6.10 (Step 8) Shaders & Uniforms . 109
6.11 Synchronization . 114
6.12 (Step 9) Descriptors . 115
6.13 (Step 10) Graphics Pipeline . 117
6.14 Images And ImageView . 122
6.15 (Step 11) Render Loop . 123
6.16 Exercises . 127

6.16.1 Chapter Questions . 127
6.16.2 Practical Exercises . 128

7 Texturing 129
7.1 Introduction . 129
7.2 Texture Coordinates . 130
7.3 Texturing Objects with Vulkan . 131
7.4 Texture Blur (Gaussian) . 137
7.5 Swirling . 138
7.6 Pixelate . 139
7.7 Edge-Detection . 140
7.8 Black & White . 142
7.9 Fish-Eye . 143
7.10 Height-Map . 144
7.11 Exercises . 147

7.11.1 Chapter Questions . 148
7.11.2 Practical Exercises . 148

8 Lighting 149
8.1 Why is Lighting so Important? . 149

DRAFT REVISION DRAFT REVISION

D
RA
FT

9

8.2 Global vs Local . 150
8.3 Lighting Components (Diffuse, Specular and Ambience) 150
8.4 Diffuse (Lambert’s Law) . 151

8.4.1 Beware of the Sign . 152
8.4.2 Normals to ‘World’ Space . 152

8.5 Flat, Gouraud and Phong Shading . 155
8.6 Lighting Calculations . 157

8.6.1 Phong Shading . 157
8.6.2 Gouraud Shading . 161

8.7 Single and Multiple Lights . 163
8.7.1 Reflection . 165
8.7.2 Blinn-Phong . 165

8.8 Light Types (Directional, Point, Cone,) . 165
8.9 Distance Attenuation . 166
8.10 Exercises . 166

8.10.1 Chapter Questions . 167
8.10.2 Practical Exercises . 167

9 Geometry Shader 168
9.1 Pass-Through . 168
9.2 Adding Geometry (Shells) . 172
9.3 Wireframe Normals . 173
9.4 Billboarding . 175
9.5 Exercises . 178

9.5.1 Chapter Questions . 178
9.5.2 Practical Exercises . 178

10 Cube Maps, SkyBox & Reflection 179
10.1 Introduction . 179

10.1.1 Cube Map Coordinates (Normal) 180
10.2 SkyBox . 182

10.2.1 Disable Depth Writing . 183
10.3 Reflection (with Cube Maps) . 183

DRAFT REVISION DRAFT REVISION

D
RA
FT

10

10.4 Exercises . 184
10.4.1 Chapter Questions . 184
10.4.2 Practical Exercises . 184

11 Fog & Depth 185
11.1 Introduction . 185
11.2 Exercises . 188

11.2.1 Practical Exercises . 188

12 Bump, Normal, Parallax and Displacement Mapping 189
12.1 Introduction . 189
12.2 Coordinate Spaces (Tangent Space) . 189
12.3 Normal Mapping (World Space) . 190
12.4 Displacement Mapping . 192
12.5 Parallax Mapping . 192
12.6 Exercises . 194

12.6.1 Chapter Questions . 194

13 Instancing 196
13.1 Introduction . 196
13.2 Instance ID . 197
13.3 Instance Uniforms . 197
13.4 Exercises . 201

13.4.1 Practical Exercises . 201

14 Tessellation 202
14.1 Introduction . 202
14.2 Pass-Through . 203
14.3 gl_TessLevel . 207
14.4 Quads . 207
14.5 Summary . 208
14.6 Exercises . 209

14.6.1 Practical Exercises . 209

15 Shadows 210

DRAFT REVISION DRAFT REVISION

D
RA
FT

11

15.1 Introduction . 210
15.1.1 Simple and Beautiful (Shadow Mapping) 210

15.2 Theory . 211
15.3 3D World Position to 2D and Depth . 212

15.3.1 Depth Comparison . 213
15.3.2 Linear Depth Buffer . 214
15.3.3 Orthographic or Perspective Projection Matrix 214
15.3.4 Visual Artefacts . 215

15.4 Discussion . 215
15.5 Filtering, Smoothing and Soft-Shadows . 216
15.6 Transparency . 217
15.7 Debugging . 217
15.8 Image Resolution . 217

15.8.1 Typical Problems . 217
15.8.2 Multiple Shadow Maps (Resolution) 219
15.8.3 Clipping and Soft Fall-Off . 219
15.8.4 Scaling and Offsetting the Stored Z-Depth 219

15.9 Implementation . 220
15.10Conclusion . 222
15.11Exercises . 222

15.11.1 Chapter Questions . 222
15.11.2 Practical Exercises . 223

16 Skinning 224
16.1 Introduction . 224
16.2 Hierarchies & Transforms . 225

16.2.1 Skeletal Animation . 226
16.3 Linear Deformation . 226

16.3.1 Algorithm . 226
16.4 Skinned Tubular Mesh (Hand-Crafted) . 227
16.5 Summary . 233
16.6 Exercises . 234

16.6.1 Chapter Questions . 234

DRAFT REVISION DRAFT REVISION

D
RA
FT

12

16.6.2 Practical Exercises . 234

17 Post-Processing & Deferred Rendering 235
17.1 Introduction . 235

17.1.1 Post-Processing . 236
17.1.2 Deferred Rendering . 236

17.2 Multiple Buffers & Phases . 237
17.3 Summary . 244
17.4 Exercises . 244

17.4.1 Chapter Questions . 245
17.4.2 Practical Exercises . 245

18 Good Practices 246

19 Reading Lists 248

20 Troubleshooting and Q&A 249

21 Appendix 251
21.1 Simple Shader Listing . 251

Bibliography 252

Index 256

DRAFT REVISION DRAFT REVISION

D
RA
FT

13

Dedicated to those who appreciate the

beauty and complexity of computer

graphics

DRAFT REVISION DRAFT REVISION

D
RA
FT

DRAFT REVISION DRAFT REVISION

D
RA
FT

1

Introduction & Overview

1.1 Getting Started

This book provides an introductory guide to getting started with com-
puter graphics using the Vulkan API. The book focuses on the prac-
tical aspects with details regarding previous and current generation
approaches, such as, the shift towards more efficient multi-threaded
solutions. The book has been formatted and designed, so whether or Sample program listings and support

material are provided online to comple-
ment the book.

not you are currently an expert in computer graphics, actively working
with an existing API (OpenGL), or completely in the dark about this
mysterious topic, this book has something for you. If you’re an expe-
rienced developer, you’ll find this book a light refresher to the subject,
and if you’re deciding whether or not to delve into graphics and the
Vulkan API, this book may help you make that significant decision.
This is an ambitious book, but not unrealistic, and we know that com-
puter graphics is a little bit of an art and involves a variety of skills
and abilities. There is so much more to know than this book is able
to present - however, it presents the essential facts of the subject with
a high-level introduction to the core components and their mechanics.
It’s not that we necessarily excluded anything critical from this book,
but it would be unrealistic to try and cover every possible aspect in
a single text. For the sake of practicality, we discuss a variety of im-
portant aspects of the Vulkan API, such as, the differences between
traditional graphical API paradigms, setting up a Vulkan project, per-
formance factors and real-world applications and examples.

Figure 1.1: Designed and maintained by
Khronos Group for high performance on
rendering and compute [6].1.2 Computer Graphics

Computer graphics is an exciting and important multi-discipline sub-
ject with applications in:

DRAFT REVISION DRAFT REVISION

D
RA
FT

16 introduction to computer graphics and the vulkan api

• visualisation solutions,
• video games,
• image and video processing,
• graphical modeling,
• animation,
• augmented and virtual reality,
• production/tool optimisation (CPU/GPU),
• real-time solutions,
• rendering & simulation,
• visual effects,
• user interaction
• robotics
• ... Name: ‘VULKAN’

The Vulkan API was a ground-up re-
design of the popular OpenGL API, pre-
viously referred to as the ‘Next Genera-
tion OpenGL’ (GLNext) initiative - how-
ever, over time it was decided to re-
name the API to ‘Vulkan’ to help empha-
sis the radical change in thinking, i.e.,
the aim to provide applications low-level
direct control over processor (GPU/A-
PU/CPU) acceleration for maximized
performance and predictability.

Computer graphics covers topics from extraction and visualisation to
generation and manipulation in both 2-dimensional and 3-dimensional
contexts. In this book, you’ll focus primarily on 3-dimensional visual
solutions. However, you’ll still require and apply 2-dimensional prin-
ciples like texture manipulation and mapping to pixel and screen space
effects (e.g., blurring, edge detection and smoothing). You’ll discover
that computer graphics gives you the power to create worlds of infinite
possibilities (e.g., from chocolate cities ‘choco-land’ to real-world loca-
tions like London) or help visualise complex problems (like structural
stress in buildings or the workings of internal organs in the human
body). The implementations can range in complexity as well - from a
simple single triangle with no lighting or texturing requiring a couple
of hundred lines of code to a complete renderer engine that’s able to
display realistic human models accurately down to the hairs on their
head (requiring thousand or more lines of code with dozens of differ-
ent shaders and optimisations). What is more, these solutions may be
off-line taking minutes or days to calculate or microseconds for real-
time interactive virtual environments (video games).

1.3 Aim of this Book

This book aims to introduce computer graphics programming in a
practical context while addressing a number of crucial questions with
regard to ‘another’ graphical application programming interface (API),
for example:

At the end of this book, you should
feel comfortable enough to work with
the Vulkan API (i.e., create, customize
and generate a variety of simple graph-
ical applications). You should be able
to explain the core components of the
API, and importantly, why and how they
fit together to accomplish the necessary
graphical technique [12, 9].

4 What exactly is Computer Graphics and the Vulkan API?
4 Why is understanding the ‘differences’ between the API important?
4 How do you to get started programming a graphical application

with Vulkan?

DRAFT REVISION DRAFT REVISION

D
RA
FT

introduction & overview 17

Figure 1.2: Vulkan has a steep learning
curve initially - but over time the bene-
fits and freedom provided by the API are
rewarded compared to existing solutions
(greater optimisations and customisabil-
ity).

4 Understanding where and why a graphical program ‘fails’ - e.g.,
perform worse than current or existing graphical API

4 Dealing with problems, such as, cross-platform, memory leaks,
graphical issues, rapid prototyping, versions, ...

4 How to work effectively on complex projects with Vulkan
4 Background introduction to the history of different graphical API
4 Revision on basic graphical principles and techniques (shaders,

lighting, transforms, triangles)
4 Managing Vulkan API (structured modular programming)
4 Implement a basic graphical application from the ground up using

the native Vulkan API
4 Essential graphical principles and how to implement them with

Vulkan
4 How to implement popular graphical effects (e.g., lighting, bump

maps, instancing and texturing)

1.4 Prerequisite (Setting-up Vulkan)

Pre-requisites to working with Vulkan The computer graphics samples
in this book are build around the Vulkan API - hence, to implement
and run the examples you’ll need to download and install one of the
Vulkan SDK libraries on your machine.

To download and install the necessary Vulkan API drivers and SDK (if
you don’t already have them installed on your system) is very straight-
forward. For example, a popular Vulkan API SDK is:

Lunar-G (http://lunarg.com/)

Figure 1.3: The LunarG SDK provides
the development and runtime compo-
nents for building, running, and debug-
ging Vulkan applications. This includes
the Vulkan loader, Vulkan layers, debug-
ging tools, SPIR-V tools, the Vulkan run
time installer, documentation, samples,
and demos.

In addition, you’ll need to have a basic understanding of core pro-
gramming principles (e.g., functions, pointers, libraries and the ability

DRAFT REVISION DRAFT REVISION

D
RA
FT

18 introduction to computer graphics and the vulkan api

to read simple computer programs written in C, C++ or Java). While
basic knowledge of computer graphics concepts would be beneficial
(for example, framebuffers and refresh rate), however, it’s not required,
as you’ll be guided through the process of writing a basic graphic ap-
plications from the ground-up.

The practical examples and listings in the book are implemented using
C/C++.

1.5 Summary

These are exciting times for computer graphics. With advancements
in technologies and hardware we’re seeing breakthroughs in realism
and creativity. The material to create amazing effects is freely available
(e.g., free open source libraries, online tutorials and free 3-dimensional
models). While computer graphics can seem daunting and difficult
initially - especially if your mathematics is a bit rusty - the rewards at
the end are well worth the time and effort.

DRAFT REVISION DRAFT REVISION

D
RA
FT

2

Background (OpenGL and Vulkan)

Khronos launched the Vulkan 1.0 speci-
fication on February 16th, 2016.2.1 Introduction

Since OpenGL was first released in 1992 by Silicon Graphics Inc., it has
been widely adopted across the world by industry as well as academia.
The API reduced the engineering complexities and what followed over
the coming years was the birth of visually breathtaking solutions that
captured the imagination (both visually and inspirationally). The abil-
ity to accomplish stunning computer generated images was made pos-
sible through further technological advancements. Computer graphics
has become increasingly challenging using conventional approaches
and expectations have and continue to grow, especially in areas in-
volved with films, games and virtual reality. One specific challenge is
the ability to exploit the advancements in rapidly changing technolo-
gies. For example, despite the ready availability of multiple high per-
formance graphics cards, the limitations of existing libraries has made
it difficult if not impossible to exploit the full potential of the hardware
(distributing the workload for processing and rendering high fidelity
images in real-time across multiple devices efficiently [4]). While par-
allel processing paradigms have become an attractive solution in recent
years, with multiple cores and threads working together to offering
tremendous performance gains, developing parallel applications that
exploit these parallel speed-ups efficiently and reliably is a significant
challenge. Figure 2.1: The Khronos Group is a

non-profit, member-funded consortium
focused on the creation of royalty-free
open standards for parallel comput-
ing, graphics and vision processing on
a wide variety of platforms and de-
vices. Currently there are 100+ industry-
leading company members across the
globe.

Vulkan is an exciting multi-platform cross-language graphical and
compute interface that exploits the latest ‘parallel’ hardware architec-
tures. Vulkan provide you and developers with a powerful interface
to create stunning visuals for a wide range of applications. Vulkan
still follows the same original ‘OpenGL’ initiatives, i.e., to develop a
high quality open source, cross-platform API (Mac, Windows, Linux,
Android, Solaris and FreeBSD). OpenGL has come a long way and

DRAFT REVISION DRAFT REVISION

D
RA
FT

20 introduction to computer graphics and the vulkan api

done amazingly well over the last 25 years (Figure 2.2). Be that as
it may, it is time for a major update. As the original OpenGL API
follows a state machine architecture this ties the API to a single on-
screen context. In addition the OpenGL API is blind to everything the
GPU is doing (optimised and managed within the driver - and hidden
from the developer). Vulkan takes a different approach - following an
object-based API with no global state so all state concepts are localized
to a Command-Buffer (you’ll learn about Command-Buffers in Section
6.6). What is more Vulkan is more explicit about what the GPU is
doing (less hiding what is happening within the driver).

API improvements:

Explicit Control
Multi-Threading Friendly
Direct State Access (DSA)
Bindless Graphics
Framebuffer Memory Info
Texture Barrier
Acceleration for applications (e.g., Browsers, WebGL, ..)

The principle of explicit control, means you promise to tell the driver
every detail. So the driver doesn’t have to guess or make assumptions.
In return, the driver is more streamlined and efficient (does what you
asked for when you asked for it quickly). For instance, memory man-
agement in Vulkan gives the control to the application (total memory
usage is more visible and simplifies operations, such as as for stream-
ing data). Remember, the application is in charge (so doing it correctly
is your responsibility).

While the latest OpenGL graphical API (known as Vulkan) might seem
like another iteration, it is well worth learning or even reviewing. At
the same time, Vulkan is in its first release (revision 1.0) - and possesses
a huge number of changes/improvements compared to any previous
update. Importantly, these improvements should not be ignored, as
they offer possibilities that were previously not feasible. These key
features will help you get more out of GPUs. However, to gain im-
provements it is important you understand the differences (i.e., appli-
cations need to be written differently to utilize these additional fea-
tures and control - OpenGL ! = Vulkan). As shown in Figure 2.3,
you’ll notice the shift of power between the driver and the applica-
tion. Vulkan’s abstraction means your application is much closer the
hardware compared to traditional APIs. Your application is driving
the hardware directly, while leaving just enough abstraction to make
things portable. You’re not being second-guessed by the driver, while
at the same time you’re not being first-guessed either. You now have

DRAFT REVISION DRAFT REVISION

D
RA
FT

background (opengl and vulkan) 21

Figure 2.2: Evolution of the OpenGL API
to the most recent incarnation known as
‘Vulkan’.

all the control you need to get the best out of your hardware. If it
doesn’t go fast in Vulkan, it’s your fault (of course, remember, with
great power comes great responsibility).

A few of the “big tick” items with Vulkan is:

• Explicit control,
• Support for multi-core/threading,
• Predictability,
• Texture formats, memory management, and syncing are client-

controlled
• Vulkan drivers do no error checking and
• Bandwidth efficiency.

2.2 History of Vulkan

The Vulkan API was designed and is maintained by the Khronos
Group to meet current and future demands for achieving high perfor-
mance rendering and compute solutions. The Vulkan API achieves this
by allowing greater low level control (explicitly) - moving away from
‘default’ parameters/assumptions set within the driver. The developer
has to manage the memory, resource updates, batching, scheduling, ...
Hence, the Vulkan API initially seems verbose and complicated due
to the large amount of initiation and management (through functions,
parameters and structures), yet this is crucial for Vulkan’s success. It
should also be noted, that DirectX 12 from Microsoft follows a similar
design to Vulkan (explicit low level control). For instance, previously,

DRAFT REVISION DRAFT REVISION

D
RA
FT

22 introduction to computer graphics and the vulkan api

Figure 2.3: High-level view of what has
changed between OpenGL and Vulkan.
Importantly, the shift in power and work
from the driver to the application. The
application is now responsible for a
number of crucial tasks that were pre-
vious hidden to the developer, such
as, memory management, resources and
command-buffers. This modifications
provides a more ‘streamline’ and effi-
cient solution (bringing the application
developer nearer to the hardware).

‘OpenGL’ did not address multi-threading and was not designed to
support the concurrent and parallel paradigm which would be a seri-
ous problem in todays multi-core multi-threaded environment. How-
ever, the Vulkan API is designed to exploit these multi-threaded envi-
ronments (and is how it is able to outperforms previous API).

2.3 11 Steps

You’ll see an overview of the essential components in most Vulkan
graphical applications in Figure 2.4. To complement this program-
ming section, the components have been grouped into 11 distinct steps.
From step 1 which initializes the application and creates the window -

DRAFT REVISION DRAFT REVISION

D
RA
FT

background (opengl and vulkan) 23

(Section 6.5) (Section 6.12)
(Section 6.10)

(Section 6.13)

(Section 6.15)

(Section 6.4)

(Section 6.6)

(Section 6.1)
Figure 2.4: Decomposition of the most
popular Vulkan components available in
common graphical applications. The il-
lustration provides an overview of the
elements and how they fit together in
a simple application. You’ll review and
discuss each of the components in the
following sections (i.e., from initializing
Vulkan and the physical device to build-
ing a Command-Buffer and rendering to
the screen).

to the final stage 11 which performs the updates and rendering. Each
step provides a self-contained set of material which is used to breakup
an otherwise complex system. The steps enable you to progress in an
orderly manner as you learn the rational behind each of the elements
and how they fit together (e.g., swap-chains and command-buffer).
Each step builds upon the previous steps and enable you to incremen-
tally build a complete graphical application using the Vulkan API that
utilizes all of the features (in a modular manner).

Briefly, the 11 steps are:

DRAFT REVISION DRAFT REVISION

D
RA
FT

24 introduction to computer graphics and the vulkan api

1. Initialize application and create a window (operating system spe-
cific)

2. Initialize Vulkan (Vulkan Instance)
3. Initialize Device (e.g., GPU)
4. Create Swap-Chain (managing the display output)
5. FrameBuffer & Render-Pass (output image surfaces)
6. Command-Buffer & Command-Pool (essential for graphics - as all

draw commands need to be in a command-buffer)
7. Vertex Data (geometry you’ll be drawing)
8. Shaders & Uniform Buffers (essential for graphics to have a vertex

and fragement shader in addition to any parameters/passing of
data to the shaders)

9. Descriptors (glue that holds everything together, such as, the
shaders and geometry vertex data)

10. Graphics Pipeline (connecting everything together and enabling
features)

11. Render Loop (drawing/syncing)

2.4 Naming Convention

The Vulkan API variables and functions follow a consistent naming
convention. While both variables and functions start with the letters
‘vk’, you need to remember, functions start with a lowercase letter
while variables start with an uppercase letter, for example:

Function: vkCreateInstance(..)

Variable: VkResult

In the example listings that follow in subsequent sections, the Vulkan
API functions and structures have been emphasised to help you iden-
tify the key elements.

2.5 Exercises

2.5.1 Chapter Questions

Question When was the Vulkan 1.0 specification released?

Question What is the naming convention for Vulkan variables and
functions?

DRAFT REVISION DRAFT REVISION

D
RA
FT

background (opengl and vulkan) 25

Question What is the root methodology behind Vulkan compared to
previous graphical API?

Question What is a ray tracing algorithm and how does it compare to
a rasterization approach?

DRAFT REVISION DRAFT REVISION

D
RA
FT

3

Mathematics

Figure 3.1: A large majority of computer
graphics principles requires you under-
stand common mathematical topics (e.g.,
matrix and vector mathematics, linear al-
gebra and trigonometry).

3.1 Introduction

There are a few fundamental mathematical concepts that are indis-
pensable when working with computer graphics and geometric sys-
tems (e.g, vectors and matrices including concepts such as normals
and the dot product). The main mathematical tools that you’ll review
in this chapter are:

• Vectors
Dot
Cross

• Matrices
Transforms

• Quaternions
Rotations

Hence, you’ll briefly review the workings and implementation details
for each mathematical concept. However, in practice you may prefer to
use existing pre-written libraries (e.g., glm), but be careful you don’t
get caught with problems, such as, “handed” convention (i.e., left or
right handed differences) or function speed-up hacks, which can cause
large numerical errors.

3.2 Vector

3.2.1 What is a Vector?

A vector represents a mathematical or physical direction and length (or
magnitude) and is depicted by an arrow (with the arrow symbolizing
the direction and the length of the arrow the magnitude). For example,
the wind has a direction and speed, as shown on weather maps. You

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 27

can have different dimensions of vectors (i.e., 1D, 2D, 3D, 4D, ...). Note,
a 1D vector would just be a scalar float. However, you’ll primarily be
dealing with 3D vectors composed of an x, y, and z). If you want a
2D vector just remove the z. In code, a vector is nothing more than
an array of variables (e.g., float[3]). So that you can distinguish the
dimensions of your vector, you’ll add the number to the end, e.g.,
“Vector3” and “Vector2”. You’ll use a class or structure to represent
your vector since it makes the code more readable and you’ll be able
to exploit operator overload.

Let’s get this out the way right at the start - what is the difference “in
code” between a “Point” and a “Vector”? For example, a Vector3 and
a Point3 structure. The answer: Nothing! The code is identical, except
for the name of course.

In short, don’t make work for yourself. Don’t create structures or
variables that accomplish the same task but use different names. For
example, you might be tempted to use Vectors for direction and Points
for position. However, the name of the variable should be sufficient
for a detailed description of what the variable is does. For example,
Listing 3.1 shown below:

Listing 3.1: Application of Vector3 (e.g., Positions and Directions)
1 Vector3 position;

2 Vector3 direction;

3 Vector3 velocity;

4 Vector3 force;

3.2.2 Vectors and Points

A 3D vector differ from a 3D point tuple (x,y,z) in 3D game mathe-
matics. They are different ‘mathematically’, while you represent them
the same pragmatically. The difference is that a vector is an algebraic
object that may or may not be given as a set of coordinates in some
space. A point is just a point given by coordinates. Generally, you can
conflate the two. An intuitive way to think about the association be-
tween a vector and a point is that a vector tells you how to get from
the origin (that one point in space to which you assign the coordinates
(< 0, 0, 0 >) to its associated point. While in code they may appear the
same (e.g., Vector3 for a variable), ensure you know ‘mathematically’,
what that variable stands for (i.e., a 3d position in space or a vector
direction with magnitude).

3.2.3 Vector3

DRAFT REVISION DRAFT REVISION

D
RA
FT

28 introduction to computer graphics and the vulkan api

Listing 3.2: Unsophisticated Vector3 Class Implementation
1 class Vector3

2 {

3 public:

4 float x;

5 float y;

6 float z;

7 };

Without vectors, basic geometric calculations would be very complex,
difficult to read, and time consuming when debugging. Furthermore,
once you understand vectors and how to use them, in combination
with the various routines (e.g., dot and cross product) you’ll be able to
tackle daunting geometric problems without even breaking a sweat.

3.2.4 Dot Product

In a nutshell, the dot product is amazing. It’s flexible, computationally
efficient, and straightforward to use. To summarize, here are the main
features the dot product offers:

• Magnitude squared distance of two vectors is the dot product oper-
ation

• Sign of the result of the dot product enables us to determine if vec-
tors are facing towards or away from one-another

Word of caution, this operation does not require the vectors to be
of unit-length, so you can avoid the cost of normalizing the vectors

• Cosine of the angle between two vectors
Warning, the vectors must be of unit-length, also the ‘sign’ of

direction is not provided (i.e., only provides the shortest path and
doesn’t tell us the direction)

• Project a vector onto another vector
Note, the vector you are projecting onto should be a unit-vector

• Dot product doesn’t involve any complex computational operations
(e.g., sqrt, sin) and can be performed using simple multiplication
and addition

The dot product can be speeded-up on modern hardware tech-
nology since operations such as multiplication can be performed
in parallel (e.g., dot product can be done in a single instruction on
some processors)

The dot product returns a single scalar value and can easily be imple-
ment, as shown in Listing 3.3.

Listing 3.3: Unsophisticated Vector3 Dot Product Implementation.
1 inline

2 float Dot(const Vector3& A, const Vector3& B)

3 {

4 return (A.x * B.x + A.y * B.y + A.z * B.z);

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 29

5 };

3.2.5 Cross Product

While the dot product may come first for usefulness and features the
cross product is not far behind for providing a similar list of useful
operations. The cross product of two vectors (a and b) is written as a×
b and returns a vector. In three dimensional space, the cross product
of two vectors is a vector that is “perpendicular” to both the initial
vectors.

The main features of the cross product are:

• Calculates a vector perpendicular to two unit vectors
• Can be combined with the dot product to provide a direction of

rotation between two unit vectors (i.e., dot product provides the
angle between the two unit vectors but doesn’t provide the direction
of rotation)

• Cross product doesn’t involve any complex computational opera-
tions (e.g., sqrt, sin) and can be performed using simple multiplica-
tion, addition and subtraction

Note, modern hardware can perform the cross product in a single
operation due to the parallel nature of the operation

• the area of a parallelogram with sides AB and AC is equal to the
magnitude of the cross product of vectors representing two adjacent
sides (while the area of a triangle would be half that)

The direction of the resulting vector cross product is given by the
“right-hand” convention. With your right hand, if your first finger
is vector a, and your second finger is vector b, then your thumb is
the cross product result a× b. The implementation details in code are
shown in Listing 3.4.

Listing 3.4: Unsophisticated Vector3 Cross Product Implementation.
1 inline

2 Vector3 Cross(const Vector3& A, const Vector3& B)

3 {

4 Vector3 vec;

5 vec.x = (A.y*B.z) - (B.y*A.z);

6 vec.y = (A.z*B.x) - (B.z*A.x);

7 vec.z = (A.x*B.y) - (A.y*B.x);

8 return vec;

9 };

Be warned that the cross product is “non-commutative”, i.e., (a × b)
does “not” equal (b× a).

DRAFT REVISION DRAFT REVISION

D
RA
FT

30 introduction to computer graphics and the vulkan api

3.2.6 Reconstructing Angles from Positions

Given a set of points, you can reconstruct the link’s angle from the
positional information as shown in Figure 3.2. This can be valuable
when you have a set of animation capture points, and you want to
reconstruct the articulated character’s bone structure (i.e., rigid bodies
and joint angles).

Figure 3.2: Direction to Angle - Illus-
trating how to reconstruct angles from
points. You subtract P3 and P1 from P2 to
construct two vector directions. Divid-
ing them by their magnitudes normal-
izes them (i.e., to their unit length val-
ues). Finally, the dot product of the two
vectors gives us the cosine of the angle
between them.

3.2.7 Plane Equation

The plane equation is a mathematical method for representing the
valuable concept of a planar surface. The plane equation is probably
one of the most useful tools in your algorithm artillery. It boasts the
advantage of being uncomplicated and computationally fast. To start
with, you can define a plane mathematically by four different methods,
but you most commonly represented it as ‘a point and a normalized
vector’. The normalized vector is perpendicular to the plane, while
the known point can be anywhere on the planes surface. As you’ll
see, the Cartesian form of the plane equation is formally defined as:
A x + B y + C z + d = 0, where < A, B, C > is the vector normal to
the plane, < x, y, z > is a point on the plane, and d is the shortest dis-
tance from the plane to the origin. The plane equation is used for an
assortment of crucial techniques and forms the backbone of a number
of fundamental algorithms.

Plane Equation & Dot Product The plane equation can be calculated
using the dot product. To define a plane, you need two pieces of
information. First, you need a point on the plane, anywhere on the
plane; it doesn’t matter as long as the point is on the plane. Second,
you need the normal of the plane (i.e. the direction the plane is facing).

d = n̂ · ~p (3.1)

where n̂ is the plane normal in Cartesian coordinates (unit-length),
while the ~p represents the coordinates of a point on the plane, and d

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 31

represents the shortest distance from the plane to the origin. Note, the
point ~p can be any point on the surface of the plane.

3.2.8 Support Function

Many algorithms make use of a mathematical tool called the support
function, a.k.a support mapping. A support function takes a direction
and an array of vertices as input and returns a point as output. The
output point is the furthest point along the given direction given all
the vertices. Note, there can be multiple points that are valid support
function outputs for a particular array of vertices. For instance, the
support function of an AABB, given the positive x-axis direction, can
return any point on the AABB’s face in the positive x-axis direction.

3.3 Matrix

3.3.1 Why Matrices?

Matrices are a compact way of representing and combining transfor-
mations (e.g., rotations and translation). Matrices are so common that
most computer hardware (e.g., graphical processing units (GPUs) and
CPUs) are optimized to perform very efficient matrix operations (i.e.,
with special instructions and by means of parallelization).

3.3.2 Column or Row Major

A matrix can be ordered using either Column or Row ordering (i.e.,
depending upon your preference). While DirectX uses Row Major or-
dering to store the matrix in memory, OpenGL uses Column Major
ordering. For this book, you primarily use Column Major ordering.

Figure 3.3: Column or Row Major - Vi-
sually illustrating the difference between
a column and row matrix organisation.

1 /*
2 * Column-major 4x4 matrix

3 *
4 * Layout:

5 * 0 4 8 12

6 * 1 5 9 13

7 * 2 6 10 14

8 * 3 7 11 15

9 *

DRAFT REVISION DRAFT REVISION

D
RA
FT

32 introduction to computer graphics and the vulkan api

10 * 3x3 Rotation Matrix Indices

11 * 0 4 8

12 * 1 5 9

13 * 2 6 10

14 *
15 * 3x1 Translation Indices

16 * 12

17 * 13

18 * 14

19 *
20 */

Figure 3.4: Matrix Elements - The
OpenGL specification for a 4x4 ma-
trix uses column-major ordering. This
means that the values of the matrix are
stored by filling the columns with val-
ues, and only moves onto the next col-
umn once the current column is com-
pletely filled. This column-major order
is adhered to throughout all the matrix
operations within OpenGL. Remember,
every fourth consecutive elements in an
array represents a column in a 4ÃŮ4 ma-
trix.

3.3.3 A 4x4 Matrix

A 4x4 matrix (aka a homogeneous transformation matrix) can contain
multiple different transformations (e.g., scaling, rotation, and trans-
lation), as shown in Figure 3.5. Rather than working with multiple
different types of matrix, you will only work with a 4x4 matrix. Note,
just in-case you didn’t catch-on, a vector3 is technically a 1x3 matrix.

Figure 3.5: 4x4 Homogeneous Transfor-
mation Matrix - Illustrating the different
parts of a 4x4 matrix that represent the
different transformations.

Figure 3.5 illustrates the decomposition of a 4x4 matrix into a 3x3 ro-
tation matrix and a 1x3 translation matrix. Also, it shows how the
diagonal components of the 3x3 rotation affect scaling along the x, y,
and z axis., while the global scaling and perspective values are typi-
cally fixed.

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 33

3.3.4 Creating a Matrix

A matrix is just an array of variables. For example, an uncomplicated
4x4 matrix is shown below in Listing 3.5 is merely an array of 16 floats.

Listing 3.5: Uncomplicated Matrix.
1 class Matrix4

2 {

3 public:

4 float M[16];

5 };

For C++ and C#, you take advantage of accessor functions and oper-
ator overloading to make using variables easier and safer (i.e., sanity
checks within the accessors), as shown in Listing 3.6.

Listing 3.6: Basic Matrix4 class for C++.
1 class Matrix4

2 {

3 public:

4 // Row - Column Format

5 // e.g., mat.Get(2,4) is row=2, and column=4

6 // or mat(2,4) - using operator overloading

7 float M[16];

8
9 // Accessor with sanity checks (i.e., boundary and

10 // valid number asserts)

11
12 float Get(int row, int col) const

13 {

14 DBG_ASSERT(row>=0 && row<4);

15 DBG_ASSERT(col>=0 && col<4);

16 return M[row*4+col];

17 }// End Get(..)

18
19 // Note - you can’t overload operator[] to

20 // accept multiple arguments. Instead -

21 // instead you can overload operator() if you want to access

22 // values using (x,y) syntax

23 float& operator() (int row, int col)

24 {

25 DBG_ASSERT(row>=0 && row<4);

26 DBG_ASSERT(col>=0 && col<4);

27 return M[row*4+col];

28 }

29 };

30
31 // example:

32 Matrix4 mat;

33 mat(0,3) = 2;

34 // and

35 float val = mat.Get(0,3);

Note, a matrix can be stored in row-column or column-row form.
Make sure you know which is which and be consistent.

DRAFT REVISION DRAFT REVISION

D
RA
FT

34 introduction to computer graphics and the vulkan api

3.3.4 Identity Matrix

The identity matrix is analogous to the number 1. If you multiply
any matrix by an identity matrix, you will get the original matrix.
The format for an identity matrix is all zeros except for the diagonal
components, as shown in Equation 3.2.

Midentity =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (3.2)

The implementation for creating an identity matrix is shown in Listing
3.7.

Listing 3.7: Creating a 4x4 Identity Matrix.
1 // Returns an instance of an identity matrix

2 static

3 Matrix4 Identity()

4 {

5 Matrix4 m;

6 m(0,0)=1; m(0,1)=0; m(0,2)=0; m(0,3)=0;

7 m(1,0)=0; m(1,1)=1; m(1,2)=0; m(1,3)=0;

8 m(2,0)=0; m(2,1)=0; m(2,2)=1; m(2,3)=0;

9 m(3,0)=0; m(3,1)=0; m(3,2)=0; m(3,3)=1;

10 return m;

11 }

3.3.4 Translation Matrix

The translation matrix represents a 3D world positions (i.e., an x, y,
and z Cartesian point in space).

Essentially, if you start with an identity matrix, which does nothing
when multiplied with another matrix. Then the bottom three values
describe the translational information, as shown in Equation 3.3.

Mtranslation =




1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


 (3.3)

Listing 3.8: Creating 4x4 Translation Matrix.
1 static

2 Matrix4 CreateTranslation(float x, float y, float z)

3 {

4 Matrix4 m = Matrix4.Identity;

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 35

5 m(0,3)=x;

6 m(1,3)=y;

7 m(2,3)=z;

8 return m;

9 }

3.3.4 Scale Matrix

You’ll want to make things smaller and bigger! You can scale objects
with a scaling matrix. You can scale the x, y, and z axis by modifying
the diagonal elements of the matrix, as shown in Equation 3.4.

Mscale =




sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


 (3.4)

Listing 3.9: Creating 4x4 Scale Matrix.
1 Matrix4 CreateScale(float x, float y, float z)

2 {

3 Matrix4 m = Matrix4.Identity;

4 m(0,0)=x;

5 m(1,1)=y;

6 m(2,2)=z;

7 return m;

8 }

3.3.4 Rotation Matrix

You need to be able to rotate your objects. You formulate the three
main axis rotation matrices, as shown in Equation 3.5.

MXRotation =




1 0 0 0
0 cos(−XAngle) −sin(−XAngle) 0
0 sin(−XAngle) cos(−XAngle) 0
0 0 0 1




MYRotation =




cos(−YAngle) 0 sin(−YAngle) 0
0 1 0 0

−sin(−YAngle) 0 cos(−YAngle) 0
0 0 0 1




MZRotation =




cos(−ZAngle) −sin(−ZAngle) 0 0
sin(−ZAngle) cos(−ZAngle) 0 0

0 0 1 0
0 0 0 1




(3.5)

DRAFT REVISION DRAFT REVISION

D
RA
FT

36 introduction to computer graphics and the vulkan api

The order that you multiply the matrices determines the order the
rotations will be applied to the point. For example:

P × (X × Y × Z) Rotates in X, Y, then Z
P × (Y × X × Z) Rotates in Y, X, then Z
P × (Z × X × Y) Rotates in Z, X, then Y

where P is the point, and X, Y, and Z represent the matrix-axis rotation.

Listing 3.10: Rotation Matrix Implementation.
1 static

2 Matrix4 CreateRotationX(float ax)

3 {

4 Matrix4 m = Matrix4.Identity();

5 m(1,1) = (float)Math.Cos(-ax); m(1,2) = -(float)Math.Sin(-ax);

6 m(2,1) = (float)Math.Sin(-ax); m(2,2) = (float)Math.Cos(-ax);

7 return m;

8 }

9
10 Matrix4 CreateRotationY(float ay)

11 {

12 Matrix4 m = Matrix4.Identity();

13 m(0,0) = (float)Math.Cos(-ay); m(0,2) = (float)Math.Sin(-ay);

14 m(2,0) = -(float)Math.Sin(-ay); m(2,2) = (float)Math.Cos(-ay);

15 return m;

16 }

17
18 Matrix4 CreateRotationZ(float az)

19 {

20 Matrix4 m = Matrix4.Identity();

21 m(0,0) = (float)Math.Cos(-az); m(0,1) = -(float)Math.Sin(-az);

22 m(1,0) = (float)Math.Sin(-az); m(1,1) = (float)Math.Cos(-az);

23 return m;

24 }

3.3.5 Matrix-Matrix Multiplication

You can construct matrices that represent different transformations
(e.g., scaling, translation, and rotation), which you combine through
multiplication.

Always remember matrix multiplication is NOT commutative. For
example, if you want to rotate the object first then translate its position,
you have to be sure you do the multiplication in the correct order;
otherwise, you’ll end up, translating the object then rotating it.

Listing 3.11: Matrix Multiplication Implementation (result = A * B)
1
2 Matrix4 Multiply(const Matrix4& ma, const Matrix4& mb)

3 {

4 Matrix4 result;;

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 37

5 for (int i = 0; i < 4; ++i)

6 for (int j = 0; j < 4; ++j)

7 result(i,j) = ma.Get(i,0) * mb.Get(0,j)

8 + ma.Get(i,1) * mb.Get(1,j)

9 + ma.Get(i,2) * mb.Get(2,j)

10 + ma.Get(i,3) * mb.Get(3,j);

11 return result;

12 }

3.3.6 ‘Pure’ Rotation

Matrices that contain only rotation possess special features. For exam-
ple, they can be easily inverted and converted to and from quaternion
or axis-angle format.

3.3.6 Orthogonal Matrices (Useful-Axis)

A matrix that contains only rotational information is termed an ‘or-
thogonal’ matrix.

3.3.6 Transpose and Inverse

The inverse of an orthogonal (i.e., ‘pure’ rotation) matrix is its trans-
pose (i.e., you swap the columns and rows). This is extremely valuable
since it is computationally fast, since it requires no complex mathemat-
ical operations (e.g., sin and cos), and is straightforward and simple to
implement in code, as shown in Listing 3.12.

Listing 3.12: Matrix Transpose Implementation.
1
2 Matrix4 Transpose(const Matrix4& m)

3 {

4 Matrix4 result;

5 for (int i = 0; i < 4; ++i)

6 for (int j = 0; j < 4; ++j)

7 result(i,j) = m.Get(j,i);

8 return result;

9 }

3.3.7 Transforming a Vector

A vector is basically a matrix with a single row, or column, depending
upon your configuration. You can multiply your 4x4 matrix by a 4x1

DRAFT REVISION DRAFT REVISION

D
RA
FT

38 introduction to computer graphics and the vulkan api

vector (you’ll convert your 3x1 to a 4x1 vector with the last component
set to zero). The operation is shown in Equation 3.6.

[
x y z 1

]
∗




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44


 =

[
a b c d

]
(3.6)

Listing 3.13: Matrix-Vector Transform Implementation.
1 // Row-Vector Convention

2 Vector3 Transform (const Vector3& v, const Matrix4& m)

3 {

4 float result[4];

5 for (int i = 0; i < 4; ++i)

6 {

7 result[i] = v.X*m(0,i) + v.Y*m(1,i) + v.Z*m(2,i) + m(3,i);

8 }

9 return Vector3(result[0]/result[3],

10 result[1]/result[3],

11 result[2]/result[3]);

12 }

3.3.7 Little Test

So does your implementation work? You’ll do a simple example to
demonstrate your matrix and vector are performing the correct cal-
culation. Don’t just walk away and ‘assume’ it works. You should
always ask the question, have I tested and am able to ‘prove’ that the
code works - even if it’s just modifying a few lines for optimisation
reasons - did the optimisation or modification break the original im-
plementation?

Let’s create a simple Vector3 (e.g., 0,1,0) pointing straight-up, then
you’ll create a simple rotation matrix (e.g., rotate π

2 (i.e., 90 degrees)
around z-axis). If you typed the code correctly, you should end up
with a Vector3 pointing to the right (e.g., -1,0,0). Listing 3.14 demon-
strates a simple implementation example for transforming a vector in
code.

Note!!! You “Always” work with radians!! Not degrees, potatoes, or
bananas, but “radians”. Furthermore, positive rotation is counterclock-
wise, not clockwise. That is why when you rotate the Vector3(0,1,0),
around the z-axis by π

2 , you get Vector3(-1,0,0).

Listing 3.14: Basic Matrix-Vector Transform Sanity Test.
1

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 39

2 // Start with <0,1,0>, rotate it, and get <-1,0,0> back

3 Vector3 vy = Vector3(0,1,0);

4 Matrix4 rotZ = Matrix4.CreateRotationZ((float)Math.PI*0.5f);

5 Vector3 vr = Vector3.Transform(vy, rotZ);

6 // If all went well, vr equals (-1,0,0); well approximately, e.g., (-0.9999, 0, 0),

due to numerical errors and floating point precision ;)

3.3.8 Matrix Inversion

A matrix is just a rectangle array of numbers or symbols organised
into rows and columns. For example:

[A] =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

[A] =

[
0.25 0.33

0.125 0.66

] (3.7)

So given the popular equation F = ma, if you know the force and
the acceleration, you can work out the mass from m = F

a . However,
for matrices, the division operation does not exist, hence, you use the
‘inverse’: m = a−1F.

Matrix Inverse Properties Given a square matrix [A] (i.e., equal number
of rows and columns), then you can say:

[A]−1[A] = [A][A]−1 = [I] (3.8)

where [I] is the identity matrix (i.e., matrix equivalent of 1).

There are two methods for inverting a matrix:

• Analytical
• Numerical

Analytical Matrix Inversion For small matrix problems (e.g., 2x2 or
3x3), the solution can be computed by hand, for example:

[A] =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

[A]−1 =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]

[A]−1[A] =

[
1 0
0 1

]
= [I]

(3.9)

DRAFT REVISION DRAFT REVISION

D
RA
FT

40 introduction to computer graphics and the vulkan api

Numerical Matrix Inversion When an analytical solution does not exist,
then a numerical solution can be sought. For example:

[A] =

[
0.25 0.33

0.125 0.666

]

[A]−1 =

[
5.31734 −2.6347
−0.998 1.996

]

[A]−1[A] =

[
1 0
0 1

]
= [I]

(3.10)

Techniques for numerically inverting a matrix, include:

• Gaussian Elimination (LU factorization, Gauss-Seidel)
• Singular Value Decomposition (SVD)
• Cholesky Factorization (symmetric defined matrices)

When considering a numerical routine, computational cost and robust-
ness are important factors - for example, you may want the algorithm
to converge on a best guess solution for singular matrix problems (i.e,
non-convertible matrix - analogous to a divide by zero issue).

Singular Systems If a matrix is ‘not’ invertible it is said to be singular
(it exists on its own). When a matrix is singular, the determinant of a
matrix is equal to zero.

Singular systems arise when:

• the equations representing the rows in a matrix are closely inter-
related

• data in the matrix contains significant errors which makes it seem
as if the rows in the matrix are closely inter-related

Determinant The determinant of a matrix is a single scalar value. Ev-
ery square matrix has a determinant. For example, to calculate the
determinant for a 2× 2 matrix:

det[A] =

[
a b
c d

]

= ad− bc

(3.11)

When the determinant of a matrix is zero, it is not invertible.

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 41

3.4 Quaternion

Quaternions are an efficient, straightforward and robust way of rep-
resenting rotations. You can represent a rotation using a 3x3 matrix,
however, a quaternion only uses 4 variables instead of the 9 variables
for a 3x3 matrix. Allows you to easily be interpolated, combine, and
re-normalized orientations during drifting (numerical errors).

3.4.1 Why Quaternions?

If quaternions are compared with other types of methods for repre-
senting rotation (e.g., Euler’s angles, matrices, axis-angle) the quater-
nion comes out on top. In summary:

• They don’t suffer from gimbals lock
• They use the minimum number of variables (i.e., 4-floats) to uniquely

represent a rotation with no ambiguity
• They are easy to combine (i.e. through multiplication the same as

with matrices)
• They can be inversed easily (i.e., unit-quaternion’s inverse is its con-

jugate, which is simply the negative of the vector components)
Hence, you can calculate angular difference between pairs of unit-

quaternions easily and fastly
• Interpolating is a breeze
• Drifting due to numerical errors is easier to correct (i.e., re-

normalizing the unit-quaternion) compared to matrices

3.4.2 Unit-Quaternion (Always)

In the majority of cases your quaternions will always be unit-
quaternions. If they aren’t then something has gone wrong. Hence,
assert and check that the length of your quaternions is always (ap-
proximately) equal to one.

3.4.3 Creating a Quaternion

Essentially, a quaternion is just a 4 vector class, and its implementation
is very simple, as shown in Listing 3.15. However, it’s all the helper
methods that make the quaternion tool invaluable (e.g., multiplication
and interpolation methods) that you go into next.

Listing 3.15: Implementation of a Quaternion class.
1 class

2 Quaternion

DRAFT REVISION DRAFT REVISION

D
RA
FT

42 introduction to computer graphics and the vulkan api

3 {

4 public:

5 float w, x, y, z;

6 };

3.4.3 Quaternion from Axis-Angle

Listing 3.16: Quaternion From Axis-Angle Implementation.
1
2 Quaternion QuaternionFromAxisAngle(const Vector3& axis, float angle)

3 {

4 Quaternion q;

5 q.X = axis.X * (float)Math.Sin(angle/2);

6 q.Y = axis.Y * (float)Math.Sin(angle/2);

7 q.Z = axis.Z * (float)Math.Sin(angle/2);

8 q.W = (float)Math.Cos(angle/2);

9 return q;

10 }

3.4.3 Quaternion to Axis-Angle

Listing 3.17: Quaternion To Axis-Angle Implementation.
1
2 void QuaternionToAxisAngle(const Quaternion& q,

3 Vector3& outAxis,

4 float& outAngle)

5 {

6 outAngle = 2 * (float)Math.Acos(q.w);

7 float s = (float)Math.Sqrt(1-q.w*q.w); // assuming quaternion normalised then w is

less than 1, so term always positive.

8 if (s < 0.001)

9 { // test to avoid divide by zero, s is always positive due to sqrt

10 // if s close to zero then direction of axis not important

11 outAxis.x = q.x; // if it is important that axis is normalised then replace with

x=1; y=z=0;

12 axis.y = q.y;

13 axis.z = q.z;

14 return;

15 }

16
17 outAxis.X = q.x / s; // normalize axis

18 outAxis.Y = q.y / s;

19 outAxis.Z = q.z / s;

20 }

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 43

3.4.3 Quaternion to Matrix

The top left 3x3 part of the rotation matrix is formed with Equation
3.12.




1− 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw 0
2qxqy + 2qzqw 1− 2q2

x − 2q2
z 2qyqz − 2qxqw 0

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2
x − 2q2

y 0
0 0 0 1


 (3.12)

Listing 3.18: Quaternion to Matrix Implementation.
1
2 Matrix4 QuaternionToMatrix(const Quaternion& q)

3 {

4 float sqw = q.W*q.W;

5 float sqx = q.X*q.X;

6 float sqy = q.Y*q.Y;

7 float sqz = q.Z*q.Z;

8
9 Matrix4 m = Matrix4.Identity();

10
11 // invs (inverse square length) is only required if quaternion is not already

normalised

12 float invs = 1 / (sqx + sqy + sqz + sqw);

13 m(0,0) = (sqx - sqy - sqz + sqw)*invs; // since sqw + sqx + sqy + sqz =1/invs*invs

14 m(1,1) = (-sqx + sqy - sqz + sqw)*invs;

15 m(2,2) = (-sqx - sqy + sqz + sqw)*invs;

16
17 float tmp1 = q.X*q.Y;

18 float tmp2 = q.Z*q.W;

19 m(1,0) = 2.0f * (tmp1 + tmp2)*invs;

20 m(0,1) = 2.0f * (tmp1 - tmp2)*invs;

21
22 tmp1 = q.X*q.Z;

23 tmp2 = q.Y*q.W;

24 m(2,0) = 2.0f * (tmp1 - tmp2)*invs;

25 m(0,2) = 2.0f * (tmp1 + tmp2)*invs;

26 tmp1 = q.Y*q.Z;

27 tmp2 = q.X*q.W;

28 m(2,1) = 2.0f * (tmp1 + tmp2)*invs;

29 m(1,2) = 2.0f * (tmp1 - tmp2)*invs;

30 return m;

31 }

3.4.3 Quaternion from Matrix

As show in Equation 3.12, with the rule that your quaternion is a unit-
quaternion (i.e., q = (qw, qx, qy, qz) where |q| = 1)

You need to know how a rotation matrix (i.e., a ‘pure’ 3x3 rotation ma-
trix without scaling) can be compared with the result of a quaternion

DRAFT REVISION DRAFT REVISION

D
RA
FT

44 introduction to computer graphics and the vulkan api

(e.g., see Figure 3.5 for the components of a matrix.).




r11 r12 r13

r21 r22 r23

r31 r32 r33


 =




q2
w + q2

x − q2
y − q2

z 2(qxqy − qzqw) 2(qxqz + qyqw)

2(qxqy + qzqw) q2
w − q2

x + q2
y − q2

z 2(qyqz − qxqw)

2(qxqz − qyqw) 2(qyqz + qxqw) q2
w − q2

x − q2
y + q2

z




(3.13)

by remembering that q2
w + q2

x + q2
y + q2

z = 1, you can rearrange and
solve Equation 3.13 to calculate the 3x3 rotation matrix components.

Listing 3.19: Quaternion from Matrix.
1
2 static float SIGN(float x) {return (x >= 0.0f) ? +1.0f : -1.0f;}

3 static float NORM(float a, float b, float c, float d) {return sqrt(a * a + b * b + c

* c + d * d);}

4
5 static

6 Quaternion QuaternionFromMatrix(const Matrix4& m)

7 {

8 /*
9 | 00, 01, 02 |

10 m = | 10, 11, 12 |

11 | 20, 21, 22 |

12
13 q = | qx, qy, qz, qw |

14 */

15 float qx = (m(0,0) + m(1,1) + m(2,2) + 1.0f) / 4.0f;

16 float qy = (m(0,0) - m(1,1) - m(2,2) + 1.0f) / 4.0f;

17 float qz = (-m(0,0) + m(1,1) - m(2,2) + 1.0f) / 4.0f;

18 float qw = (-m(0,0) - m(1,1) + m(2,2) + 1.0f) / 4.0f;

19 if (qx < 0.0f) qx = 0.0f;

20 if (qy < 0.0f) qy = 0.0f;

21 if (qz < 0.0f) qz = 0.0f;

22 if (qw < 0.0f) qw = 0.0f;

23 qx = sqrt(qx);

24 qy = sqrt(qy);

25 qz = sqrt(qz);

26 qw = sqrt(qw);

27 if (qx >= qy && qx >= qz && qx >= qw)

28 {

29 qx *= +1.0f;

30 q1 *= SIGN(m(2,1) - m(1,2));

31 q2 *= SIGN(m(0,2) - m(2,0));

32 q3 *= SIGN(m(1,0) - m(0,1));

33 }

34 else if (qy >= qx && qy >= qz && qy >= qw)

35 {

36 qx *= SIGN(m(2,1) - m(1,2);

37 qy *= 1.0f;

38 qz *= SIGN(m(1,0) + m(0,1));

39 qw *= SIGN(m(0,2) + m(2,0));

40 }

41 else if (qz >= qx && qz >= qy && qz >= qw)

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 45

42 {

43 qx *= SIGN(m(0,2) - m(2,0));

44 qy *= SIGN(m(1,0) + m(0,1));

45 qz *= 1.0f;

46 qw *= SIGN(m(2,1) + m(1,2));

47 }

48 else if (qw >= qx && qw >= qy && qw >= qz)

49 {

50 qx *= SIGN(m(1,0) - m(0,1));

51 qy *= SIGN(m(2,0) + m(0,2));

52 qz *= SIGN(m(2,1) + m(1,2));

53 qw *= 1.0f;

54 }

55 else

56 {

57 Debug_c.Assert("**error**\n");

58 }

59 r = NORM(qx, qy, qz, qw);

60 qx /= r;

61 qy /= r;

62 qz /= r;

63 qw /= r;

64 return Quaternion(qx,qy,qz,qw);

65 }

3.4.4 Quaternion-Quaternion Multiplication

You multiply quaternions together to concatenate the rotational trans-
forms (i.e., analogous to how you multiply matrices together to com-
bine the individual transforms into a single unified solution). The
quaternion multiplication mathematics is easier to digest, if you subdi-
vide the quaternion elements into a ‘scalar’ s and ‘vector’ v component
and use the dot and cross product:

(sa, ~va)(sb, ~vb) = (sa)(sb) + (sa)(~vb) + (sb)(~va) + ((~va)× (~vb))− ((~va) · (~vb))

group into parts

= ((sa)(sb)− ((~va) · (~vb))), scalar part

((sa)(sb) + (sb)(~va) + ((~va)× (~vb))) vector part
(3.14)

Listing 3.20: Quaternion Quaternion Multiplication.
1
2 Quaternion Multiplication(const Quaternion& qa,

3 const Quaternion& qb)

4 {

5 Quaternion qr = Quaternion.Identity;

6 Vector3 va = Vector3(qa.x, qa.y, qa.z);

7 Vector3 vb = Vector3(qb.x, qb.y, qb.z);

8 qr.w = qa.w*qb.w - Vector3.Dot(va,vb);

9 Vector3 vr = Vector3.Cross(va,vb) + qa.w*vb + qb.w*va;

10 qr.x = vr.x;

DRAFT REVISION DRAFT REVISION

D
RA
FT

46 introduction to computer graphics and the vulkan api

11 qr.y = vr.y;

12 qr.z = vr.z;

13 return qr;

14 }

3.4.5 Quaternion Inverse (Conjugate)

For a unit-quaternion the conjugate is the same as the inverse. You
represent the conjugate by the ∗ symbol, e.g., conjugate(q) = q∗.

The conjugate is useful because it has the following properties:

• q∗a q∗b = (qb qa)∗ In this way you can change the order of the multi-
picands.

• qq∗ = a2 + b2 + c2 + d2 = real number. Multiplying a quaternion by
its conjugate gives a real number. This makes the conjugate useful
for finding the multiplicative inverse. For instance, if you are using
a quaternion q to represent a rotation then conj(q) represents the
same rotation in the reverse direction.

• Pout = q Pin q∗ you use this to calculate a rotation transform.

Listing 3.21: Quaternion Conjugate.
1
2 Quaternion Conjugate(const Quaternion& q)

3 {

4 // Note, you invert the vector component

5 Quaternion qr (q.w, -q.x,-q.y,-w.z);

6 return qr;

7 }

3.4.6 Transform a Vector by a Quaternion

As pointed out, you can use the Conjugate to make transforming a
Vector3 a piece of cake. You convert the Vector3 to a quaternion (i.e.,
set the scalar W component to 0), then multiply them to get the result.
You extract the transformed Vector3 (i.e., the x, y, and z component of
the resulting multiplied quaternions). Simple eh?. The formulation is
given by:

vout = q vin q∗ (3.15)

where vin is the original point converted to a quaternion (i.e., w com-
ponent is set to zero), q and q∗ are the quaternion and quaternion con-
jugate, and vout is the transformed point (i.e., x, y, and z component of
the resulting quaternion).

DRAFT REVISION DRAFT REVISION

D
RA
FT

mathematics 47

Listing 3.22: Quaternion Vector Transform.
1
2 Vector3 Transform(const Vector3& v, const Quaternion& q)

3 {

4 Quaternion qv(0, v.x, v.y, v.z);

5 Quaternion qr = q * qv * Conjugate(q);

6 return new Vector3(qr.x, qr.y, qr.z);

7 }

3.5 Summary

Most of the time, you’ll use pre-written math libraries (such as, vmath
or glm). If you do write a set of math libraries, you’ll probably write
them once and never need to worry about writing them again. How-
ever, having a solid understanding of how the vector mathematics
works can dramatically help you understand the creation, optimiza-
tion, and debugging of algorithms (both from a theoretical and practi-
cal perspective).

Type Representation

Vector ~v x, y, z
Unit Vector v̂ ~v

||~v|| =⇒ ||v̂|| = 1

Position ~p x, y, z
Rotation ~q x, y, z, w (quaternion)
Sphere ~p, r
Plane ~p, n̂
AABB ~p, ~e
OBB ~p, ~q, ~e
Line/Segment ~p0, ~p1

Ray ~p, n̂
Triangle (t) ~p0,~p1,~p2

Mesh ∑ t
Capsule ~p0, ~p1, r

Table 3.1: Defining primitive objects us-
ing a mathematical representation (e.g.,
a sphere is represented by a centre posi-
tion p and a radius r).

You use the symbols in Table 3.1, such as, arrows and hats above vec-
tors, to enable us to read mathematical equations at a glance. For
instance, you can easily identify a scalar a and a ~a quickly; or a vector
~b and a unit-vector b̂. You also provide simple implementation listings
to solidify the your understanding.

3.6 Exercises

After you’re familiar with the core mathematical principles, you’ll
need to constantly practice to strengthen your understanding. The

DRAFT REVISION DRAFT REVISION

D
RA
FT

48 introduction to computer graphics and the vulkan api

following example questions provide you this opportunity.

3.6.1 Chapter Questions

Question Given the three matrices A: translation along the vector v =
(4, 0, 2), B: rotation 90 degrees around the z-axis and C: a non-uniform
scaling with 2 in x, 3 in y and 4 in z.

a) Give the (4 x 4) matrix form of each of A, B and C.

b) Calculate the transformed point P’, given the point P = (1, 2, 3, 1).
i.e., P’ = CABP

Question What does it mean if two vectors are orthogonal? How can
you determine if two vectors are orthogonal?

Question Give a 3x3 homogeneous matrix to rotate an image clockwise
by 90 degrees. Then shift the image to the right by 10 units. Finally
scale the image by twice as large. All these transformations are to be
done one after the other in sequence

Question What are the basic 2D geometric transformations? Explain
each with its matrix representation

Question Show that the composition of two rotations is additive by
concatenating the matrix representations for R(θ1) and R(θ2) to obtain
R(θ). R(θ) = R(θ1 + θ2)

Question Derive the transformation matrix for rotation about any axis

Question Given a triangle A(0,0), B(1,1) and C(6,2). Write down the
transformation matrix to magnify the triangle to twice its size keeping
C(6,2) fixed.

Question Explain basic 2D transformations? Give the homogeneous
matrix representations for each transformation.

DRAFT REVISION DRAFT REVISION

D
RA
FT

4

Graphical Principles

Figure 4.1: How you go from 3-
dimensional geometry using transforms
and rasterization techniques to produce
a graphical output on your screen (pix-
els).

As you might be new to graphical programming, you might find a
number of concepts confusing and alien when discussed in the context
of the Vulkan API, such as, shaders and projection transforms. While
it would be beyond the scope of a single Chapter to teach a complete
graphical syllabus, instead this Chapter aims to review a number of
core graphical principles that are fundamental to most graphical so-
lutions. In addition, you’re encouraged to read around the subject to
complement your understanding of the material (e.g., computer graph-
ics books, introductory graphics/maths articles and online tutorials).
In this Chapter, you’ll quickly review the following concepts:

• Basic Types
Scalars, Vectors, Floats, Colors, ..

• Transforms
Coordinate Spaces
Camera and Projection

• Primitives
Lines, Triangles

• Data/Geometry
Vertices & Indices

• Drawing Principles
Draw Ordering (Counter)-Clockwise, Texturing, Depth Buffer,

Clipping
Render output and clipping-cube

• Programmable Graphics
Shaders, Pipeline, ..

4.1 Basic Types

As with any standard programming language, you’ll have a set of
standard data types, such as, floats, doubles and strings. You’ll also

DRAFT REVISION DRAFT REVISION

D
RA
FT

50 introduction to computer graphics and the vulkan api

need to create a number of structures to encapsulate data for ease
of use and readability. For example, arrays of data for representing
your geometry, matrix transforms and color information. You need
to be aware of overheads, such as, the sizes of variables in memory,
alignment specifics (structure padding) and conversion costs (doubles
to floats). For example, see Figure 4.2 for a short list of common Vulkan
types and Listing 4.1 for a simple power of two test function.

Figure 4.2: To help with cross-platform
development Vulkan defines various
data types that map standard C/C++
data types.

Figure 4.3: Matrix representation of ba-
sic transformations (2-dimensions) - see
Chapter 3 for a review of vector/matrix
mathematical concepts.

Listing 4.1: Simple example of understanding binary data - testing if
a value is a power of two (e.g., 2, 4, 8, 16, 32, 64, 128 - such as for
memory allocations and texture dimensions/widths/heights).
1 bool IsAlignedPowerOfTwo(uint32_t alignment)

2 {

3 // 2- 10

4 // 4- 100

5 // 8- 1000

6 // ...

7 // Returns true if a power of 2

8 return ((alignment & (alignment-1)) == 0);

9
10 /*
11 e.g.

12 val = 1000 (8) - power of 2

13 val-1 = 0111

14 val & (val-1) = 0000 (==0) return true

15
16 val = 0110 (6) - not a power of 2

17 val-1 = 0101

18 val & (val-1) = 0100 (!=0) return false

19
20 */

21 }// End AlignedPowerOfTwo

4.2 Transforms

Mathematics has many applications in computer graphics especially
matrices as discussed in Chapter 3. Matrices represent groups of equa-

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 51

tions that provide a compact, efficient and systematic way of doing
the mathematical operations, such as, rotation, translation, scaling and
projection (i.e., the representation of any transformation affine or non-
affine). Importantly, the hardware within the computer (like the GPU)
is optimised for matrix arithmetic. Of course, one of the most power-
ful feature that matrices give you is the ability to concatenate several
transformations into a single matrix.

Common vector and matrix graphical operations that you’ll come
across again and again (and should ideally be comfortable with), in-
clude:

• Matrix-Vector Transform
• Matrix-Matrix Multiplication
• Vector Cross/Dot Product
• Rotation Matrix (x, y and z axis)
• Scale Matrix
• Translation Matrix
• Projection Matrix
• View Matrix

For a refresher on basic vector and matrix operations see Chapter 3.

Figure 4.4: Simplified graphical
overview of the transformation stages
between spaces (local space, world
space, camera space and projection
space) using matrix transforms (model
matrix, view matrix, world matrix and a
projection matrix).

As shown in Figure 4.4, there are multiple coordinate systems involved
in 3-dimensional graphics, such as, Object Space, World Space (aka
Model Space), Camera Space (aka Eye Space or View Space), and
Screen Space (aka Clip Space). The best thing is, the conversion be-
tween the different transform spaces is effortless. You switch between
different spaces by multiplying by a transform matrix. For instance,
switching from world space to camera space you’d use your ‘view ma-
trix’.

DRAFT REVISION DRAFT REVISION

D
RA
FT

52 introduction to computer graphics and the vulkan api

While it’s important you know how matrix and vector operations work
(especially for 3-dimensional graphics), you don’t always have to write
your own, and a number of free open source libraries are available. For
example, one popular mathematics library is:

OpenGL Mathematics (GLM) [1] library for graphics software based
on the OpenGL Shading Language (GLSL) specifications. GLM is a
header only C++ mathematics library that provides classes and func-
tions designed and implemented with the same naming conventions
and functionalities than GLSL.

4.2.1 Homogeneous Coordinates (or Projective Coordinates)

Cartesian coordinate transforms, such as, translation and perspective
projection, cannot be expressed through matrix multiplication alone
and is one of the core reasons you need to use homogeneous coor-
dinate. Your graphics card takes advantage of homogeneous coordi-
nates to perform transforms efficiently using vector processors with
4-element registers (e.g., programmable shaders and pipeline oper-
ations) - making matrix operations highly desirable. Any transfor-
mation can be represented as a matrix with each matrix having four
columns of four rows due to the homogeneous coordinate system (Fig-
ure 4.6). In order to position and align your objects and set up repre-
sentations of your scene inside your computer, you’ll need to be able
to transform your objects. As pointed out earlier, there are many trans-
formations available to you (like stretching, twisting and bending), but
the three absolutely necessary transforms you need to know are rota-
tion, translation and scaling (Figure 4.5).

Figure 4.5: Core 3-dimensional homoge-
neous matrix transforms. Matrices are
able to represent a variety of geomet-
ric transformations - which are able to
be combined with each other by matrix
multiplication. As a result, any perspec-
tive projection of space can be repre-
sented as a single matrix.

Remember, when you transforms your points the result is always made
homogeneous. This means that your coordinate values are divided
with ‘W’ (see Figure 4.6).

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 53

Figure 4.6: Homogeneous coordinates
are crucial in computer graphics and
3D computer vision as they allow affine
transformations and, in general, projec-
tive transformations to be easily repre-
sented by a matrix.

4.2.2 Normalized Device Coordinates (NDC)

DRAFT REVISION DRAFT REVISION

D
RA
FT

54 introduction to computer graphics and the vulkan api

Figure 4.7: 3-dimensional model to a 2-
dimensional image.

The Normalize Device Coordinates (NDC) come into action towards
the end of the processing (i.e., during the transition from 4D Homoge-
neous coordinates to screen pixels):

1. Your 4x4 PROJECTION transform takes you from 4D eye coordi-
nates to 4D clip coordinates

2. Then the perspective divide takes you from 4D clip coordinates to
3D NDC coordinates

3. Then the viewport transformation takes those 3D NDC coordinates
into 3D window coordinates.

Remember, multiplying by your ‘PROJECTION’ matrix takes you to
4D CLIP space.

Then the perspective divide gets you to the 3D NDC space.

(EYE-SPACE) –>

(PROJECTION TRANSFORM) –>

(CLIP-SPACE) –>

(PERSPECTIVE DIVIDE) –>

NDC-SPACE

Figure 4.8: Mapping the pyramid frus-
tum (eye coordinates) to the cube Nor-
malize Device Coordinates (NDC).

4.2.3 Eye Coordinates

When you transform your geometry by the model and view matrix
- this takes you to ‘eye coordinates’. In other words, Vulkan defines
the camera to be always located at (0, 0, 0) and facing to -Z axis in the
eye space coordinates. You transform your vertices (or geometry) from

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 55

object space to eye space using your ‘model-view’ matrix which you
perform on the GPU in the shader (e.g., vertex shader). The ‘model-
view’ matrix is a combination of the ‘Model’ and ‘View’ matrices.

Figure 4.9: Transforms: (a) World Coor-
dinates, (b) Eye Coordinates, (c) Clip Co-
ordinates, (d) Normalized Device Coor-
dinates (NDC), (e) Window Coordinates
(Screen Coordinates).

4.2.4 Projection

The two main categories of projection are (1) perspective and (2) par-
allel projection as shown in Figure 4.10. For parallel projections, you’ll
typically use a basic Orthographic Projection, while for Perspective
you’ll use something more fancy to capture the real-world perception
of objects getting smaller as they get further away. Applications of the
the two projection techniques:

• Parallel projection are used for on screen menus or technical draw-
ings

• Perspective projections are used for full 3-dimensional scenes that
mimic the real-world (depth and distance)

DRAFT REVISION DRAFT REVISION

D
RA
FT

56 introduction to computer graphics and the vulkan api

Figure 4.10: Broadly categorising sorting
projection methods into two main cate-
gories.

4.2.4 Orthogonal

A simple orthographic transformation where the original world units
would be preserved (the z-coordinate is simply thrown away) is shown
below in Equation 4.1:




x
y
z
1







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 =




x′

y′

z′ = 0
1


 (4.1)

Figure 4.11: Train Track - Linear perspec-
tive projection with one vanishing point.

4.2.4 Perspective

For perspective transforms, this is closer to what you see in the real-
world, where objects closer to viewer look larger and parallel lines
appear to converge to single point when they go off into the distance
(as with train tracks - Figure 4.11). The mathematics is a little more
involved for calculating the projection matrix. However, the principles
are governed by simple geometric concepts. As shown in Figure 4.12,
the projection matrix works by ‘projecting’ the object onto a surface
from a pin-point camera location. Due to the importance of the pro-
jection matrix in computer graphics the steps for calculating a simple
projection matrix follow.

You’ll typically use a one point perspective - however, multi-point per-
spective projections are possible (e.g., two and three point). These
different linear perspective method use a lines to create the illusion

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 57

of space on a flat surface. There are three types of linear perspective.
One point perspective uses one vanishing point placed on the horizon
line. Two point perspective uses two points placed on the horizon line.
Three point perspective uses three vanishing points (Figure 4.10).

Figure 4.12: Perspective (3D world to
2D screen window). The horizontal and
vertical calculations are done indepen-
dently. The perspective projection cal-
culation uses basic trigonometric prin-
ciples (e.g., similar triangles) to derive
the perspective matrix. For example, in
the diagram, you know all of the values
except x’ for the projection of the point
P[x, y, z, 1] onto the view plane.

As shown in Figure 4.12, the perspective transformation to project the
coordinates onto a simple plane is given by Equation 4.2:




x
y
z
1







1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/n 0


 =




x′

y′

z′

1


 (4.2)

where n is the near viewing plane distance (see Figure 4.12). In the
perspective case, you use similar triangles to solve for the intersection
point on the planes surface.

xc

n
=

xe

ze
yc

n
=

ye

ze

(4.3)

therefore:

xc =
xe

ze/n

yc =
ye

ze/n

(4.4)

For a real-world projection matrix, you’d have to specify a number of
parameters, and the projection surface may not be square (rectangular
with an aspect ratio). You’ll now go through the steps to creating a
more usable final perspective matrix in detail. You’ll start with an

DRAFT REVISION DRAFT REVISION

D
RA
FT

58 introduction to computer graphics and the vulkan api

empty matrix and add the specifics for each matrix element as you
progress through each step.

Step 1 Pass through ze onto wc (wc = −ze):




xe

ye

ze

we







? ? ? ?
? ? ? ?
? ? ? ?
0 0 −1 0







xc

yc

zc

wc


 (4.5)

Step 2 Map the input coordinates to the NDC coordinates using the
relationship [l, r]− > [−1, 1], [b, t]− > [−1, 1]:




xe

ye

ze

we







2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

? ? ? ?
0 0 −1 0







xc

yc

zc

wc


 (4.6)

Step 3 zc needs to be modified to include depth information for clip-
ping (e.g., depth test) and is ‘not’ just the near (n) value. Hence, you
need to work out how ze maps to the near-far. Importantly, the z calcu-
lation does not depend on the x or y coordinates. Updating the matrix
to include to extra variables ‘A’ and ‘B’ and solve them:




xe

ye

ze

we







2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 A B
0 0 −1 0







xc

yc

zc

wc


 (4.7)

zn =
zc

wc
=

Aze + Bwe

−ze
(4.8)

You have one equation and two unknowns, so it’s impossible to solve
unless you add some additional information. Hence, to accomplish
this by specifying the value for zn when the point is on the near (n)
and far (f) planes.

zn = −1 when ze = −n

zn = 1 when ze = f
(4.9)

−An + B
n

= −1 − > −An + B = −n

−A f + B
f

= 1 − > −A f + B = f
(4.10)

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 59

Hence, you have two equations and two unknowns and should be able
to solve for A and B:

A = − f + n
f − n

B = − 2 f n
f − n

(4.11)




xe

ye

ze

we







2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 − f+n
f−n − 2 f n

f−n

0 0 −1 0







xc

yc

zc

wc


 (4.12)

Step 4 Simplify the perspective matrix for a general frustum. When
the viewing volume is symmetric: r = −l and t = −b it simplifies to:




xe

ye

ze

we







n
r 0 0 0
0 n

t 0 0
0 0 − f+n

f−n − 2 f n
f−n

0 0 −1 0







xc

yc

zc

wc


 (4.13)

Listing 4.2: Example implementation of a perspective matrix (see
Equation 4.13).
1 inline

2 Matrix4 Perspective(float fov,

3 float aspect,

4 float nearz,

5 float farz)

6 {

7 float top = tan(fov * 0.00872664625) * nearz; /* 0.00872664625 = PI/360 */

8
9 Matrix4 matrix;

10 memset(matrix, 0, sizeof(GLfloat) * 16);

11
12
13 matrix[0] = nearz / (top * aspect);

14 matrix[5] = nearz / top;

15 matrix[10] = -(farz + nearz) / (farz - nearz);

16 matrix[11] = -1;

17 matrix[14] = -(2 * farz * nearz) / (farz - nearz);

18
19 return matrix;

20 }// End Perspective(..)

4.2.5 Camera (LookAt)

In Vulkan, you’ll need to explicitly define a camera object for camera
transformation. The camera or view matrix is responsible for trans-

DRAFT REVISION DRAFT REVISION

D
RA
FT

60 introduction to computer graphics and the vulkan api

forming the entire scene inversely to the origin (0,0,0) and always look-
ing along -Z axis (this space is called eye space).

You construct a view matrix using the LookAt technique. You define
the camera location at the eye position, the position you want the cam-
era to look at (or rotating to) the target point target position. You must
remember, the eye position and target are defined in ‘world space’.
The camera LookAt transformation consists of two transformations:

(MT) translating the whole scene inversely from the eye position to the
origin

(MR) rotating the scene with reverse orientation (MR), so the camera is
positioned at the origin and facing to the -Z axis

Mview = MR MT (4.14)

The translation part of LookAt transformation is the simplest part to
remember as all you need to do is move the camera position to the
origin. The translation matrix MT would be the negation of the eye
position.

MT =




1 0 0 −xe

0 1 0 −ye

0 0 1 −ze

0 0 0 1


 (4.15)

The rotation part of the LookAt transformation requires you to calcu-
late 1st, 2nd and 3rd columns of the rotation matrix.

MR =




lx ux fx 0
ly uy fy 0
lz uz fz 0
0 0 0 1




−1

=




lx ux fx 0
ly uy fy 0
lz uz fz 0
0 0 0 1




T

=




lx ly lz 0
ux uy uz 0
fx fy fz 0
0 0 0 1




(4.16)

Finally, the view matrix for camera’s LookAt transform is multiplying
MT and MR together:

Mview = MR MT =




lx ly lz 0
ux uy uz 0
fx fy fz 0
0 0 0 1







1 0 0 −xe

0 1 0 −ye

0 0 1 −ze

0 0 0 1







lx ly lz −lxxe − lyye − lzze

ux uy uz −uxxe − uyye − uzze

fx fy fz − fxxe − fyye − fzze

0 0 0 1




(4.17)

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 61

Listing 4.3: Unsophisticated LookAt Camera View Implementation.
1 inline

2 Matrix4 LookAt(const Vector3& eye,

3 const Vector3& target,

4 const Vector3& upDir)

5 {

6 // calculate the forward vector from target to eye

7 Vector3 forward = eye - target;

8 forward = Vector3::Normalize(forward); // make unit length

9
10 // calcualte the left vector

11 Vector3 left = Vector3::Cross(upDir, forward); // cross product

12 left = Vector3::Normalize(left);

13
14 // recalculate the orthonormal up vector

15 Vector3 up = Vector3::Cross(forward, left); // cross product

16
17 // init 4x4 matrix

18 Matrix4 matrix;

19 matrix = Matrix4::Identity();

20
21 // set rotation part, inverse rotation matrix: M̂ -1 = M̂ T for Euclidean transform

22 matrix[0] = left.x;

23 matrix[4] = left.y;

24 matrix[8] = left.z;

25 matrix[1] = up.x;

26 matrix[5] = up.y;

27 matrix[9] = up.z;

28 matrix[2] = forward.x;

29 matrix[6] = forward.y;

30 matrix[10]= forward.z;

31
32 // set translation part

33 matrix[12]= -left.x * eye.x - left.y * eye.y - left.z * eye.z;

34 matrix[13]= -up.x * eye.x - up.y * eye.y - up.z * eye.z;

35 matrix[14]= -forward.x * eye.x - forward.y * eye.y - forward.z * eye.z;

36
37 return matrix;

38 };// End LookAt(..)

A typical implementation of the LookAt transformation calculation
may look something like Listing 4.3.

4.3 Primitives

Primitives are the basic drawing elements (the building blocks for
more complex geometry). For example, the most common and sim-
plest primitive is the triangle. However, other simple primitives in-
cludes, points, lines, and even squares. In Vulkan, you need to specify
the primitive type you’ll be using, so the render output knows how to
interpret your stream of data (e.g., three points for a triangle or two
points for a line).

1. Lines

DRAFT REVISION DRAFT REVISION

D
RA
FT

62 introduction to computer graphics and the vulkan api

Lists, Strips, Fans, ..
2. Triangles

Lists Strips, Fans, ..

Figure 4.13: Format and configuration of
the geometric data needs to be specified.

The primitive topology is described in Vulkan via the VkPrimitive-
Topology enumerated type as shown below in Listing 4.3:

1 typedef enum VkPrimitiveTopology {

2 VK_PRIMITIVE_TOPOLOGY_POINT_LIST = 0,

3 VK_PRIMITIVE_TOPOLOGY_LINE_LIST = 1,

4 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP = 2,

5 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST = 3,

6 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP = 4,

7 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN = 5,

8 VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY = 6,

9 VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY = 7,

10 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY = 8,

11 VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY = 9,

12 VK_PRIMITIVE_TOPOLOGY_PATCH_LIST = 10,

13 VK_PRIMITIVE_TOPOLOGY_BEGIN_RANGE = VK_PRIMITIVE_TOPOLOGY_POINT_LIST,

14 VK_PRIMITIVE_TOPOLOGY_END_RANGE = VK_PRIMITIVE_TOPOLOGY_PATCH_LIST,

15 VK_PRIMITIVE_TOPOLOGY_RANGE_SIZE = (VK_PRIMITIVE_TOPOLOGY_PATCH_LIST -

VK_PRIMITIVE_TOPOLOGY_POINT_LIST + 1),

16 VK_PRIMITIVE_TOPOLOGY_MAX_ENUM = 0x7FFFFFFF

17 } VkPrimitiveTopology;

4.3.1 Backface Culling (Clockwise/Counter-Clockwise)

The draw order enables the graphical API to ‘cull’ unseen triangles
(i.e., triangles have two sides - front and back - the triangles facing
away from the viewer aren’t drawn). Hence, you need to define the
preferred drawing order when you initialize Vulkan (or any other
graphical API). The draw order is described in Vulkan via the Vk-
FrontFace enumerated type as shown below in Listing 4.3.1:

1 typedef enum VkFrontFace {

2 VK_FRONT_FACE_COUNTER_CLOCKWISE = 0,

3 VK_FRONT_FACE_CLOCKWISE = 1,

4 VK_FRONT_FACE_BEGIN_RANGE = VK_FRONT_FACE_COUNTER_CLOCKWISE,

5 VK_FRONT_FACE_END_RANGE = VK_FRONT_FACE_CLOCKWISE,

6 VK_FRONT_FACE_RANGE_SIZE = (VK_FRONT_FACE_CLOCKWISE -

VK_FRONT_FACE_COUNTER_CLOCKWISE + 1),

7 VK_FRONT_FACE_MAX_ENUM = 0x7FFFFFFF

8 } VkFrontFace;

Figure 4.14: Backface culling removes
(doesn’t draw) triangles that are facing
away from the viewer. The direction of
the triangle (front/back) is determined
by the winding order.

To distinguish between the two sides you use the following convention
(see Figure 4.14):

e0 = v1− v0

e1 = v2− v0

n =
e0× e1
||e0× e1||

(4.18)

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 63

where v0, v1 and v2 are the three corner positions of the triangle, e0
and e1 are the edges of the triangle and n is the triangle normal. The
side the normal vector emanates from is the front side and the other
side is the back side. You say the triangle is front-facing if the viewer
(camera) sees the front side of the triangle, while the triangle is back-
facing if the viewer sees the back side. Importantly, the front or back
facing direction is determined by the ‘ordering’ of the vertices. This
is not hard-coded either - as you set the ordering in the Vulkan API
(i.e., the way you compute the triangle normal), a triangle ordered
clockwise (with respect to that viewer) is front-facing, and a triangle
ordered counter-clockwise (with respect to that viewer) is back-facing.

Figure 4.15: Simplified illustration of
Vertices to Pixels.

In reality, most 3-dimensional meshes are solid (totally enclosed). The
object is constructed so the outside surface of the object has the triangle
normals facing outwards. Resulting in the camera seeing the front-
facing triangles of a solid object while the back-facing triangles are
occluded (culled).

In addition to defining the front facing triangle draw order you also
must explicitly define the culling mode. The culling mode is described
in Vulkan via the VkCullModeFlagBits enumerated type as shown be-
low in Listing 4.3.1:

1 typedef enum VkCullModeFlagBits {

2 VK_CULL_MODE_NONE = 0,

3 VK_CULL_MODE_FRONT_BIT = 0x00000001,

4 VK_CULL_MODE_BACK_BIT = 0x00000002,

5 VK_CULL_MODE_FRONT_AND_BACK = 0x00000003,

6 VK_CULL_MODE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

7 } VkCullModeFlagBits;

You’ll apply these enumeration types in later Sections when you im-
plement your Vulkan graphical application (e.g., when constructing
the Vulkan render pipeline in Listing 6.13).

4.4 Data/Geometry

The basic building block of all 3D object (and scenes) is typically a
triangle. A triangle can be created by connecting 3 points or vertices
to each other (in 2D or 3D). More complex shapes can be created by
adding and assembling more triangles. The geometry can be stored
in various file formats or generated procedurally. In addition, the tri-
angles may have color information, texture details and even lighting
specific data added to them to generate highly realistic outputs.

Figure 4.16: Wireframe render of a high-
poly car with no materials (i.e., basic
lighting) to illustrate the decomposition
of a model as simpler primitives/trian-
gles.

In this book, you’ll use simple geometry, such as, triangles, planes and
cubes to demonstrate various graphical techniques. However, you’ll

DRAFT REVISION DRAFT REVISION

D
RA
FT

64 introduction to computer graphics and the vulkan api

eventually want to draw more complex models/scenes (e.g., Figure
4.16). Of course, manually typing in the vertex/color information for
details meshes would be insane. In computer graphics there are usu-
ally lots of complicated and interesting models freely available which
are prettier to look at than simple planes and cubes.

While you might want to write your own model loading implementa-
tion, a quick solution is to take advantage of popular free open source
solutions solution. For example, one such model loading library is:

Open Asset Import Library (short name: Assimp) [2] which is a
portable Open Source library to import various well-known 3D model
formats in an uniform manner. Assimp is able to import dozens of
different model file formats by loading all the model’s data into gener-
alized data structures. As soon as Assimp has loaded the model, you
can retrieve all the data you need from the data structures and con-
vert them to your Vulkan specified layout. This becomes valuable once
you’ve got your Vulkan application up and running and you want to
start adding to its functionality.

4.5 Drawing Principles

In Vulkan (and with other modern graphical API), the viewing frus-
tum is mapped to a cube that extends from −1 to 1 in the x, y and z
(see Figure 4.17. Note, you can flip the z-axis to create a left handed
coordinate system during projection transformation discussed in pre-
vious Sections when you convert from 3D to 2D.

1. Data (triangles) are passed to the renderer
2. Transforms are applied (on the shader) to the vertices (triangles)
3. The ‘rasterization’ process draws the geometry to the image (back-

buffer screen)
4. Various optimisations/enhancements take place:

Depth buffer so geometry is drawn in the correct order
Culling so only clockwise (or counter-clockwise depending upon

the configuration) triangles are drawn (i.e., backface culling)
Clipping (the output render frustum is mapped to a −1 to 1 clip

space region)

Figure 4.17: Pass-through (identity-
transform) for the graphics renderer will
output primitives within the clip space
clip cube.

4.6 Programmable Graphics & Shaders

Shaders basically give you the ability to customize your graphics
card (akin to programming your CPU). The GPU has different pro-
grammable stages that are specifically optimised to perform specific

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 65

operations (e.g., vertex level or pixel level). For instance, the vertex
shader transforms all the vertices positions in virtual space (your 3D
model space) to the 2D coordinate which appear on screen (2D screen
space). The fragment shader basically gives you the ability to manip-
ulate the pixel information, such as, the pixel color/brightness.

In addition to the vertex and pixel shader there are other shader types.
The shader types available in Vulkan are accessed via the VkShader-
StageFlagBits enumerated type as shown below in Listing 4.6:

1 typedef enum VkShaderStageFlagBits {

2 VK_SHADER_STAGE_VERTEX_BIT = 0x00000001,

3 VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT = 0x00000002,

4 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT = 0x00000004,

5 VK_SHADER_STAGE_GEOMETRY_BIT = 0x00000008,

6 VK_SHADER_STAGE_FRAGMENT_BIT = 0x00000010,

7 VK_SHADER_STAGE_COMPUTE_BIT = 0x00000020,

8 VK_SHADER_STAGE_ALL_GRAPHICS = 0x0000001F,

9 VK_SHADER_STAGE_ALL = 0x7FFFFFFF,

10 VK_SHADER_STAGE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF

11 } VkShaderStageFlagBits;

Multiple shader flags, such as, ‘VK_SHADER_STAGE_ALL_GRAPHICS’
will become apparent when you start programming the graphical
effects with the Vulkan API in later Chapters.

As you might be starting to see, most stages feed their output directly
onto the next stage of the pipeline (hence the name ‘pipeline). For
instance, the Vertex Shader stage inputs data from the Input Assembler
stage, does its own work, and then outputs its results to the Geometry
Shader stage (see Figure 4.18).

• Input Assembler Stage The start of the pipeline - reads geometric
data (vertices and indices) from memory and uses it to assemble
geometric primitives (such as, triangles and lines)

• Vertex Stage After the primitives have been assembled, the ver-
tices are fed into the vertex shader stage. The vertex shader can
be thought of as a function that inputs a vertex and outputs a ver-
tex (one vertex in and one vertex out).

• Tessellator Stage As the name indicates, this stage is responsible
for tessellation - that is this stage subdivides the triangles of a mesh
to add new triangles. These new triangles can then be offset into
new positions to create finer mesh detail

• Geometry Stage The geometry shader stage is optional. You’ll learn
about the geometry shader in Chapter 9. The geometry shader in-
puts entire primitives. For example, if you were drawing triangle
lists, then the input to the geometry shader would be the three ver-
tices defining the triangle. Crucially, the geometry shader is able to
create and destroy geometry (unlike the vertex stage). For example,

DRAFT REVISION DRAFT REVISION

D
RA
FT

66 introduction to computer graphics and the vulkan api

Figure 4.18: Common rendering pipeline
stages. The arrow going from the GPU
resources to the different stage means
different stages can access the resources
as input. For instance, the pixel shader
stage may need to read data from a tex-
ture resource stored in memory in or-
der to do its work. Also the downward
arrow indicates the ‘pipeline’ flow from
stage to stage.

the input primitive can be expanded into one or more other primi-
tives, or the geometry shader can choose not to output a primitive
based on some condition. You’d be able to pass in a single vertex to
the geometry shader and output an entire geometric shape (or no
shape at all)

• Rasterization Stage The main job of the rasterization stage is to
compute pixel colors from the projected 3D triangles

• Pixel (or Fragment) Stage A pixel or fragment shader is executed
for each pixel fragment and uses the interpolated vertex attributes
as input to compute a color. A pixel shader can be as simple as
returning a constant color, to doing more complicated things like
per-pixel lighting, reflections and shadowing effects

• Final Output Stage After pixel fragments have been generated by
the pixel (fragment) shader, they move onto the final output stage of
the rendering pipeline. In this stage, some pixel fragments may be
rejected (e.g., from the depth or stencil buffer tests). Pixel fragments
that are not rejected are written to the back buffer. Blending is also
done in this stage, where a pixel may be blended with the pixel
currently on the back buffer instead of overriding it completely

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 67

4.7 Exercises

A number of well written books are available on the principles of com-
puter graphics which complement this text (e.g., mathematics and ge-
ometry). Once you’ve got your Vulkan graphical application up and
running you’ll be able to extend your simple implementation devel-
oped in this book to encapsulate advanced features, such as, ambient
occlusion, instancing, tessellation shader and post-processing.

Recommended books specifically focusing on Graphical Principles and
Mathematics include:

• 3D math primer for graphics and game development by Dunn,
Fletcher and Parberry, Ian [5]

• Computer Graphics: Principles and Practice (3rd Edition) by John
Hughes et al. [7]

• Real-Time Rendering by Tomas Akenine-Moller et al. [3]
• 3D Graphics Programming: Games and Beyond by Sergei

Savchenko [10]

4.7.1 Chapter Questions

Question What is the clip space?

Question Why are matrices used in graphical transforms?

Question What is a primitive?

Question What is the depth buffer used for?

Question Mention three differences between real-time graphics and
off-line (photo-realistic) computer graphics. In this context, also ex-
plain why graphics hardware, e.g., graphics cards are useful for com-
puter graphics

Question In the context of the graphics pipeline, describe the respon-
sibility of the vertex shader, rasterizer and pixel shader stage of the
graphics pipeline.

Question Mention three coordinate systems (spaces) that you may en-
counter in a rendering pipeline. Briefly explain the purpose of each
system.

Question What is backface culling, why is it useful and where in the
graphics pipeline can a backface culling test be executed?

DRAFT REVISION DRAFT REVISION

D
RA
FT

68 introduction to computer graphics and the vulkan api

Question What is a viewing frustum?

Question Why is the triangle strip more desirable geometric primitive
than a list of triangles?

Question What is the difference between convex and concave objects?

Question For the eye position e=[0,2,0] and a target position t=[0,-1,0]
and a view-up vector up=[1,1,0], what is the camera transformation
matrix?

Question Write the perspective projection matrix. Multiply it by the
given homogeneous point to demonstrate how it generates pixel coor-
dinates that reflect perspective foreshortening:




, , ,
, , ,
, , ,
, , ,







x
y
z
w


 =

Transformed 4D point
[, , ,]

Pixel value
becomes

[,]

Question Explain the differences between ‘raster’ and ‘vector graphics.

Question Distinguish between window port and viewport.

Question A cube is placed at the origin of a 3D system. Such that
all its vertices have positive coordinate values and sides are parallel to
the three principal axes. Indicate a convenient position of a viewer at
which he can see a 2-point perspective projection.

Question Define vanishing points. Is the location of the vanishing
point directly related to the viewing point?

Question What are the various logical graphic input primitives? What
are the various input modes?

Question What are the different projection methods? Explain

Question Explain RGB and HSV color modelling?

Question What is homogeneous co-ordinate? Why is a homogeneous
co-ordinate system needed in transformation matrix?

Question Derive the transformation matrix for perspective projection.

Question Explain the transformations with examples: (i) Reflection.
(ii) Shear.

Question Explain what the Depth-Buffer method is and why we need
it?

Question Explain parallel and perspective projections.

Question Discuss the Back-Face surface removal algorithm.

Question Explain depth buffer for visible surface detection in 3D

DRAFT REVISION DRAFT REVISION

D
RA
FT

graphical principles 69

graphics.

Question What is view volume? How is it specified?

Question Discuss the Back-Face surface removal algorithm.

Question Explain window to viewport transformation.

DRAFT REVISION DRAFT REVISION

D
RA
FT

5

Shaders

5.1 Introduction

Shaders are the chocolate sauce on your ice-cream. They offer truly
limitless possibilities. Shader are in almost all recent real-time graph-
ical applications (like video games), not to mention, animated CGI
movies. Some popular techniques that use shaders are: parallax-
mapping (bump-mapping), phong-shading, cell-shading, bloom and
high dynamic range lighting (HDR). So what are shaders? Shaders are
small programs developed by ‘you’ with the ability to customize the
graphical pipeline, such as:

• transform data (manipulate your geometry)
• determine colors (principles of light)
• animate and move data
• and much more

Once upon a time, long ago, graphical processing units had static
pipelines that were configurable through flags and states using the
configurable API. This, of course, stunted the creative juices of devel-
opers (prevented any customization). As time progressed OpenGL and
DirectX (and now Vulkan) solved this problem by making the pipeline
‘programmable’ (initially via low-level assembly shader languages and
later high level languages like GLSL (OpenGL Shading Language) and
HLSL (High-Level Shader Language)).

Currently there are three major shader languages:

• Cg (Nvidia)
• HLSL (Microsoft)

Derived from Cg
• GLSL (OpenGL)

Note you’re still able to write shaders in assembly for highly optimised

DRAFT REVISION DRAFT REVISION

D
RA
FT

shaders 71

solutions but it’s less common due advancements in compiler tech-
nologies and computational processing power. The main influences
on the development and steering of these shader languages over the
years have been the C-language and pre-existing solutions developed
in universities and industry with the HLSL coming from Microsoft in
2002 and later GLSL for OpenGL ARB in 2003.

Example applications of vertex shaders (run on per-vertex level) include:

• Color
• Texture
• Position
• Do not change the data type (pass-through)

Example applications of fragment shaders (pixel shaders - run on per-pixel
level) include:

• Lighting values
• Output certain color
• Computationally expensive for complex effects due to per-pixel cal-

culation (i.e., every pixel vs ever vertex in the vertex shader)

Example applications of the geometry shaders (manipulates graphical primi-
tives to create new primitives - points, lines and triangles) include:

• Shadow volumes
• Cube map (skybox)

The aim of this chapter is to provide concept and language fundamen-
tals essential to high level shader languages common for graphical
processing (e.g., GLSL 4+) (i.e., not provide a full in depth program-
ming guide on shader programming). For those of you who are new
to shader programming, there are several resources available, such as,
books and web coding sandboxes (for instance Shader Toys, GLSL
Sandbox and Vertex Shader Art), that are recommended for learn-
ing and developing your shader programming skills. Furthermore,
shader experience gained through using different programming in-
terfaces, platforms and tool-kits can be easily translated between the
different APIs/tools (Vulkan, DirectX and OpenGL) - large amount of
overlap and similarity.

DRAFT REVISION DRAFT REVISION

D
RA
FT

72 introduction to computer graphics and the vulkan api

5.1.1 Anatomy of Shaders

Shader is a program written in textual form (human readable). You’ll
find these small (shader) programs have these parts:

• Global variables
• Functions

Local variables (also variables passed through functions)
• Means of pass arbitrary data from Application to Shader (e.g., uni-

forms)
• Data structure definitions

Current shaders are written in C-type languages. Vulkan only accepts
the Spir-V shader format, however, GLSL shader files can be compile to
Spir-V files using the shader SDK compiler (e.g., glslangValidator.exe).
Hence, this chapter will focus on GLSL examples, which can be com-
piled and implemented with the Vulkan API, and should be straight-
forward to port to other API (DirectX HLSL or existing OpenGL im-
plementations). The compiled Spir-V files will typically have the ex-
tension ‘.spv’. The options for the glslangValidator compiler are given
below in Listing 5.1:

Listing 5.1: glslangValidator command prompt options.
1 Usage: glslangValidator [option]... [file]...

2
3 Where: each ’file’ ends in .<stage>, where <stage> is one of

4 .conf to provide an optional config file that replaces the default configuration

5 (see -c option below for generating a template)

6 .vert for a vertex shader

7 .tesc for a tessellation control shader

8 .tese for a tessellation evaluation shader

9 .geom for a geometry shader

10 .frag for a fragment shader

11 .comp for a compute shader

12
13 Compilation warnings and errors will be printed to stdout.

14
15 To get other information, use one of the following options:

16 Each option must be specified separately.

17 -V create SPIR-V binary, under Vulkan semantics; turns on -l;

18 default file name is <stage>.spv (-o overrides this)

19 (unless -o is specified, which overrides the default file name)

20 -G create SPIR-V binary, under OpenGL semantics; turns on -l;

21 default file name is <stage>.spv (-o overrides this)

22 -H print human readable form of SPIR-V; turns on -V

23 -E print pre-processed GLSL; cannot be used with -l;

24 errors will appear on stderr.

25 -c configuration dump;

26 creates the default configuration file (redirect to a .conf file)

27 -d default to desktop (#version 110) when there is no shader #version

28 (default is ES version 100)

29 -h print this usage message

30 -i intermediate tree (glslang AST) is printed out

31 -l link all input files together to form a single module

DRAFT REVISION DRAFT REVISION

D
RA
FT

shaders 73

32 -m memory leak mode

33 -o <file> save binary into <file>, requires a binary option (e.g., -V)

34 -q dump reflection query database

35 -r relaxed semantic error-checking mode

36 -s silent mode

37 -t multi-threaded mode

38 -v print version strings

39 -w suppress warnings (except as required by #extension : warn)

In order to understand how shaders work and how you’ll use them to
extend the drawing capabilities of graphical processing, it is necessary
to have an overview of the key concepts of shader programming, first
in general and then from the point of view of the graphical processing
unit (GPU).

Initially, there was only two programmable stages (e.g., vertex and
fragment stages) but as the thirst for freedom continued to grow -
more and more stages and control has been given to developers. In
this book, the four main shader stages you’ll explore are:

• Vertex Stage (Per-Vertex Processing) - e.g., transforming geometry
(vertices) to their final space/position

• Fragment Stage (Per-Fragment Processing) - e.g., providing coloring
information to the pixel

• (Optional) Geometry Stage - e.g., extends the Vertex Stage with the
added ability to add/remove geometry (also able to know about
neighbouring primitives)

• (Optional) Tessellation Stage - e.g., ability to add detail to the ge-
ometry (add/remove triangles)

These different stages are not static but programmable. These stages
are controlled by programs known as ‘shaders’. Importantly, you have
to implement the ‘vertex’ and ‘fragment’ shader (compulsory shaders
required to output to the screen), while the geometry and tessellation
stages are optional extras (e.g., you don’t need to implement them to
generate graphical renders). The shaders responsible for processing
the different stages are all compiled using the same ‘glslangValida-
tor.exe’ (see Listing 5.1).

The extension for the shader programs are:

.vert Vertex Shader
.frag Fragment Shader (or Pixel Shader)

.geom Geometry Shader (Chapter 9)
.tesc Tessellation Shader - Control Stage (Chapter 14)
.tese Tessellation Shader - Evaluation Stage (Chapter 14)

Even though the graphical pipeline has changed from a static to a
programmable paradigm each stage of the pipeline is still responsible
for their original tasks (e.g., transforms and lighting).

DRAFT REVISION DRAFT REVISION

D
RA
FT

74 introduction to computer graphics and the vulkan api

5.2 Link between Vulkan and Shaders

The Vulkan API has two fronts. The client-side and the server-side.
The Vulkan API operates on your application side (client-side), while
the shaders operate on the GPU side (server-side). One important
responsibility of Vulkan is to link the data to the shaders’ (e.g., using
layouts and uniforms).

Data in your application is transported to the GPU. Once on the GPU
this data your shader will be able to use this data. Your data is linked
to your shader through attributes (e.g., specify bindings and locations).

Listing 5.2: Vertex Shader.
1 // shader version

2 #version 420

3
4 // 1. input attribute from your program declared as ‘inPos’

5 layout(location = 0) in vec4 inPos;

6
7 // 2. Uniforms for the model-view-projection transforms

8 layout (binding = 0) uniform buffer

9 {

10 mat4 inProjectionMatrix;

11 mat4 inViewMatrix;

12 mat4 inModelMatrix;

13 };

14
15 // 3. shader program entry point

16 void main()

17 {

18 // combine the matrices

19 mat4 mvp = inModelMatrix * inViewMatrix * inProjectionMatrix;

20
21 // transform position by matrices

22 gl_Position = inPos.xyz * mvp;

23 }// End main(..)

The shader version number at the top of each shader file (e.g., #ver-
sion 420) allows you to know what features/syntax are used by your
shader. When no shader version is specified, the default is ES version
100 (#version 110).

Shaders files follow the standard C/C++ commenting syntax (allowing
you to make notes/explain your shader code):

• /* comment */ - starting and ending markers for comments (suit-
able for multiple line comments)

• // - everything after the double slash until a newline is a comment
(suitable for single line comments)

DRAFT REVISION DRAFT REVISION

D
RA
FT

shaders 75

5.3 Linking data to Uniforms

Linking data to Uniforms is very similar to linking data to attributes.
Uniform variables are those that remain constant for each vertex in
the scene. You create a buffer (allocate memory on the GPU for the
uniforms). You then specify the location of the uniform in the shader.
Once you know the location, you provide data to the uniform (e.g.,
lock and copy the data across). The model, view and projection ma-
trices for transformations fall in this category, since each vertex in the
scene is affected by the same model/view/projection matrices.

1 // ** 1 ** Creation of buffer/uniform

2
3 // Create ‘uniform’ buffer for passing constant

4 // data to the shader (connecting shader with the data)

5
6 // create our uniforms buffers:

7 VkBufferCreateInfo bufferCreateInfo;

8 memset(&bufferCreateInfo, 0, sizeof(bufferCreateInfo));

9 bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;

10 // size in bytes

11 bufferCreateInfo.size = sizeof(stBuffer);

12 bufferCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;

13 bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

14
15 VkResult result =

16 vkCreateBuffer(device,

17 &bufferCreateInfo,

18 NULL,

19 outBuffer);

20 DBG_ASSERT_VULKAN_MSG(result,

21 "Failed to create uniforms buffer.");

22
23 // ** 2 ** Allocate memory for buffer:

24 VkMemoryRequirements bufferMemoryRequirements = {};

25 vkGetBufferMemoryRequirements(device,

26 *outBuffer,

27 &bufferMemoryRequirements);

28
29 VkMemoryAllocateInfo matrixAllocateInfo = {};

30 matrixAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;

31 matrixAllocateInfo.allocationSize = bufferMemoryRequirements.size;

32
33 VkPhysicalDeviceMemoryProperties memoryProperties;

34 vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memoryProperties);

35
36 for (uint32_t i = 0; i <VK_MAX_MEMORY_TYPES; ++i)

37 {

38 VkMemoryType memoryType = memoryProperties.memoryTypes[i];

39 // is this the memory type we are looking for?

40 if ((memoryType.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))

41 {

42 // save location

43 matrixAllocateInfo.memoryTypeIndex = i;

44 break;

45 }

46 }// End for i

DRAFT REVISION DRAFT REVISION

D
RA
FT

76 introduction to computer graphics and the vulkan api

47
48 result =

49 vkAllocateMemory(device, &matrixAllocateInfo, NULL, outMemory);

50 DBG_ASSERT_VULKAN_MSG(result,

51 "Failed to allocate uniforms buffer memory.");

52
53 result =

54 vkBindBufferMemory(device, *outBuffer, *outMemory, 0);

55 DBG_ASSERT_VULKAN_MSG(result,

56 "Failed to bind uniforms buffer memory.");

57
58 // ** 3 ** Lock/update the uniforms contentsline

59 uint8_t *pData;

60 DBG_ASSERT_VULKAN(vkMapMemory(device, memory, 0, sizeof(ubo), 0, (void **)&pData));

61 memcpy(pData, &ubo, sizeof(ubo));

62 vkUnmapMemory(device, memory);

5.3.1 Qualifiers

Variables in shaders take on different behaviours. Some variables can
only receive data, others can only provide data. In fact, some of these
variables can only be used in the Vertex Shaders, while other variables
can only be used in the Geometry or Fragment Shaders. To differenti-
ate these type of variables there are Qualifier Types. For example:

• in/out
• uniforms
• varying

The in/out shader qualifier defines the receiving/sending of data from
buffers and whose value may change frequently.

5.3.2 Uniforms

A Uniform is a shader qualifier whose value may rarely change. You
can think of uniforms as global variables which can be seen by all
shader types.

5.3.3 Varying

There are times when attribute data needs to be used in different stages
of the pipeline (different shaders). In this cases, special type of quali-
fiers called Varying are used. They take attribute data from the current
shader and pass them along to the next shader stage.

DRAFT REVISION DRAFT REVISION

D
RA
FT

shaders 77

5.4 Developing Shaders

You’re now in the position to develop your own shaders. You’re are
going to write source code for a vertex and fragment shader. The
shader implementations are written in a C-style format. Hence, you
can use your favourite text editing program (e.g., notepad or Visual
Studio).

The Listing 5.3 below shows the simple.vert file contents. This file
will contains your vertex shader source code. Your vertex shader will
simply receive vertex data through the input. You’ll also receive a
Model-View-Projection matrix through a uniform (MVP). You’ll then
transform the vertex positions by this matrix and set it as the output
of the shader. As you’ll notice in the vertex shader below, you provide
the result to the output of the shader ‘gl_Position’. This is a built in
variable for the graphical pipeline (i.e., non-programmable aspects of
the pipeline - for instance, determining clipping/calculating specific
data for the next stage).

Listing 5.3: Basic Vertex Shader.
1 // vertex shader version

2 #version 420

3
4 // input vertex data (i.e., single position)

5 layout (location = 0) in vec4 inPos;

6
7 // single uniform parameter (transforms) - shared by all vertices

8 layout (binding = 0) uniform UBO

9 {

10 mat4 MVP;

11 } ubo;

12
13 void main()

14 {

15 // transformed vertex position for the next stage

16 gl_Position = ubo.MVP * inPos;

17 }// End main(..)

Next the file called simple.frag shown below Listing 5.4 is the fragment
shader:

Listing 5.4: Basic Fragment Shader.
1 // fragment version

2 #version 420

3
4 // output for this fragment (single pixel color)

5 layout (location = 0) out vec4 outFragColor;

6
7 void main()

8 {

9 // constant color - white - all the triangles/primitives would be white

10 outFragColor = vec4(1);

DRAFT REVISION DRAFT REVISION

D
RA
FT

78 introduction to computer graphics and the vulkan api

11 }// End main(..)

The shaders above need to compile prior to be loading and using by
the Vulkan API (i.e., binary file that is readable by the GPU). When
compiling your shader files, ensure you check the output for errors
(e.g., typing errors, like spelling mistakes or missing semi-colons). If
there are errors in your shader text file your shader compiler will not
generate a binary (check the compiler output to ensue it says ‘success-
ful’).

Common data types:

• int, float, bool, void
• vec2, vec3, vec4
• ivec2, ivec3, ivec4
• mat3, mat4
• sampler2D

For vectors you use the following accessors: ‘xyzw’ or ‘rgba’ (including
combinations, such as, .xy, .xyz) - this makes the shader implementa-
tion very flexible and compact.

Examples:

1 // mat4 to mat3

2 mat3 viewMatrix = mat3(inViewMatrix);

3
4 // selecting a row from a matrix and convert it to a vector

5 vec3 eye = -inViewMatrix[3].xyz;

6
7 // combine the matrices (multiply matrices together)

8 mat4 mvp = inModelMatrix * inViewMatrix * inProjectionMatrix;

9
10 // converting between types (explicitly)

11 gl_Position = vec4(inPos.xyz, 1.0) * mvp;

Common built in functions:

• max
• min
• clamp
• mix
• normalize
• length
• dot
• cross
• texture
• reflect
• pow
• transpose

DRAFT REVISION DRAFT REVISION

D
RA
FT

shaders 79

• inverse
• cos
• sin
• tan
• sqrt

Subsequent chapters you’ll implement different shader techniques that
enable you to understand the concepts in greater detail, such as, tex-
turing, lighting and geometrical manipulation.

You can create your own structures (i.e., using the ‘struct’ definition)
and your own functions to make your code more manageable and scal-
able (i.e., you don’t need to repeat code but create reusable functions -
readability).

5.5 Summary

At the end of this chapter you should be starting to see the incredible
power of shaders. With little information shaders are able to create
an infinite number of possibilities. In following chapters, you’ll be
delving much deeper into what you can do with shaders. Everything
drawn on the screen has been processed by the appropriate ‘shader’
running behind the scenes. Modifying shaders incorporates a new set
of functions and variables allows you to replace the default techniques
with your own. This opens up many exciting possibilities: rendering
3D scenes using more creative and sophisticated solutions and algo-
rithms.

5.6 Exercises

After you’re familiar with the shaders, you’ll need to constantly prac-
tice to strengthen your understanding. The following example ques-
tions provide you this opportunity.

5.6.1 Chapter Questions

Question What is the advantage of a programmable pipeline vs a fixed
pipeline?

Question In addition to the ‘vertex shader’ and the ‘fragment shader’
- name two additional pipeline shaders?

Question What are ‘uniforms’ for and how and when would you use
a uniform?

DRAFT REVISION DRAFT REVISION

D
RA
FT

80 introduction to computer graphics and the vulkan api

Question Write a very basic ‘vertex’ and ‘fragment’ shader (which
transforms the vertex coordinates and outputs colored geometry).

Question In your shader how would you convert a ‘vec3’ to a ‘vec4’?

Question In your shader how would you convert a ‘mat4’ to a ‘mat4’?

Question In your shader how would you extract row from a mat4 (i.e.,
vec4)?

DRAFT REVISION DRAFT REVISION

D
RA
FT

6

Programming (11 Steps)

Figure 6.1: Example listings use the Mi-
crosoft Windows API for the platform
specific details.

Welcome to the first coding steps to writing your Vulkan application.
This section, you’ll learn how to put together the various API ele-
ments in context. Essentially, you’ll take a difficult and somewhat over-
whelming task and develop a set of clear easy to understand functions.
The implementation in this book has been broken down into 11 easy
steps - making the implementation more manageable. Writing a native
Vulkan graphical program can be a bit intimidating initially due to the
amount of code and details (1000+ lines). Hence, to make setup/api
programming aspect digestible and easier to debug, you’ll subdivided
your implementation into a set of self-contained functions (see Listing
6.1) as presented by Kenwright [8]. The implementation is ‘functional’
so variables are passed around, while and returned data/values are
stored and used in subsequent methods. This way you avoid globals
while learning and analysing the reasons behind the API/graphical
concepts.

If you’re completely new to the Vulkan
API - manually typing in the code sam-
ples instead of just running the working
program will help you absorb and un-
derstanding the principles better (more
time consuming but aids in deep learn-
ing the subject).

Listing 6.1: Steps to initializing and running a basic Vulkan graphical application (split into 11 easy to un-
derstand functional stages). As you master each element, you’ll expand and customize the implementation
to deepen your understanding. Each of the steps is explain in detail in subsequent sections.
1 void main(int argc, char** argv)

2 {

3 // Step 1 - Initializing the Window

4 int width = 800;

5 int height = 600;

6 HWND windowHandle = NULL;

7 SetupWindow(width, height, &windowHandle);

8
9 // Step 2 - Initialize Vulkan (Section 6.1)

10 VkInstance instance = NULL;

11 VkSurfaceKHR surface = NULL;

12 SetupVulkanInstance(windowHandle,

13 &instance,

14 &surface);

15
16 // Step 3 - Find/Create Device and (Section 6.3)

DRAFT REVISION DRAFT REVISION

D
RA
FT

82 introduction to computer graphics and the vulkan api

17 // Set-up your selected device

18 VkPhysicalDevice physicalDevice = NULL;

19 VkDevice device = NULL;

20 SetupPhysicalDevice(instance,

21 &physicalDevice,

22 &device);

23
24
25 // Step 4 - Initialize Swap-Chain (Section 6.4)

26 VkSwapchainKHR swapChain = NULL;

27 VkImage* presentImages = NULL;

28 VkImageView* presentImageViews = NULL;

29 SetupSwapChain(device,

30 physicalDevice,

31 surface,

32 &width,

33 &height,

34 &swapChain,

35 &presentImages,

36 &presentImageViews);

37
38 // Step 5 - Create Render Pass (Section 6.5)

39 VkRenderPass renderPass = NULL;

40 VkFramebuffer* frameBuffers = NULL;

41 SetupRenderPass(device,

42 physicalDevice,

43 width,

44 height,

45 presentImageViews,

46 &renderPass,

47 &frameBuffers);

48
49 // Step 6 - Create Command Pool/Buffer (Section 6.6)

50 VkCommandBuffer commandBuffer = NULL;

51 SetupCommandBuffer(device,

52 physicalDevice,

53 &commandBuffer);

54
55 // Step 7 - Vertex Data/Buffer (Section 6.9)

56 VkBuffer vertexInputBuffer = NULL;

57 int vertexSize = 0;

58 int numberOfTriangles = 0;

59 SetupVertexBuffer(device,

60 physicalDevice,

61 &vertexSize,

62 &numberOfTriangles,

63 &vertexInputBuffer);

64
65 // Step 8 - Load/Setup Shaders (Section 6.10)

66 VkShaderModule vertShaderModule = NULL;

67 VkShaderModule fragShaderModule = NULL;

68 VkBuffer buffer = NULL;

69 VkDeviceMemory memory = NULL;

70 SetupShaderandUniforms(device,

71 physicalDevice,

72 width,

73 height,

74 &vertShaderModule,

75 &fragShaderModule,

76 &buffer,

77 &memory);

DRAFT REVISION DRAFT REVISION

D
RA
FT

programming (11 steps) 83

78
79 // Step 9 - Setup Descriptors/Sets (Section 6.12)

80 VkDescriptorSet descriptorSet = NULL;

81 VkDescriptorSetLayout descriptorSetLayout = NULL;

82 SetupDescriptors(device,

83 buffer,

84 &descriptorSet,

85 &descriptorSetLayout);

86
87 // Step 10 - Pipeline (Section 6.13)

88 VkPipeline pipeline = NULL;

89 VkPipelineLayout pipelineLayout = NULL;

90 SetupPipeline(device,

91 width,

92 height,

93 vertexSize,

94 descriptorSetLayout,

95 vertShaderModule,

96 fragShaderModule,

97 renderPass,

98 &pipeline,

99 &pipelineLayout);

100
101 // Step 11 - Render Loop (Section 6.15)

102 MSG msg;

103 while(true)

104 {

105 // Continually force the window to be redrawn as long as no other Win32

106 // messages are pending.

107 PeekMessage(&msg, NULL, NULL, NULL, PM_REMOVE);

108 if(msg.message == WM_QUIT) break;

109
110 // Your Window’s applications is responsible for retrieving and

111 // dispatching input messages to the window GUI in the main message loop

112 TranslateMessage(&msg);

113 DispatchMessage(&msg);

114
115 // Render the screen

116 RenderLoop(device,

117 width,

118 height,

119 numberOfTriangles,

120 swapChain,

121 commandBuffer,

122 presentImages,

123 frameBuffers,

124 renderPass,

125 vertexInputBuffer,

126 descriptorSet,

127 pipelineLayout,

128 pipeline);

129 }// End while(..)

130 return 0;

131
132 }// End WinMain(..)

DRAFT REVISION DRAFT REVISION

D
RA
FT

84 introduction to computer graphics and the vulkan api

6.1 (Step 1 & 2) Initializing Vulkan (Instance Creation)

The initial step is to setup your window for your operating system. As
you have to let Vulkan where you’re going to draw to (e.g., screen or
off-screen texture). The OS specific parts of the implementation will
be done for Windows, however, it should be straightforward to modify
these few occurrences for different systems (e.g., Android and Linux).

Figure 6.2: Uncomplicated window dis-
playing using the Windows API (Step 1
- Initializing the Window).

The first Vulkan specific step you’ll need to do after setting up your
window is to initialize Vulkan. This is subdivided into two main parts.
To begin with, you have to identify the Vulkan driver and charac-
teristics you want to enable (e.g., standard LUNARG driver or the
NVidia one, also what layers are available). For example, in the below
implementation, you’ll use ‘vkEnumerateInstanceLayerProperties’ and
‘vkEnumerateInstanceExtensionProperties’ to list all the layers and the
instance properties. For the example, in the example implementation
below, ‘VK_LAYER_NV_optimus’ has been hardcoded as the layer.
Typically, you’ll then also have three extensions, one will be the debug
extension (‘VK_EXT_debug_report’), which you’ll include if you want
to initialize the error callback notifications (discuss next). The next two
extensions will depend upon your operating system and what you’re
using Vulkan for (e.g., graphics, compute, ...).

Just to note, in the Listing examples in subsequent sections, you’ll often
encounter additional ‘curly brackets’ .. inside the functions. These
additional curly brackets have been added to clump together blocks of
code so it’s easier to read (i.e., self-contained modular components).

Listing 6.2: Initializing Vulkan - Vulkan doesn’t exist until you create an the Vulkan instance (vkCreateIn-
stance).
1 // Step 2 - Initialize Vulkan

2 void SetupVulkanInstance(HWND windowHandle,

3 VkInstance* outInstance,

4 VkSurfaceKHR* outSurface)

5 {

6 // Initialize VULKAN

7
8 // Layer properties

9 uint32_t count = 0;

10
11 // Returns the number of layer properties available, If the VkLayerProperties*
12 // is NULL, then the number of layer properties available is returned

13 VkResult result =

14 vkEnumerateInstanceLayerProperties (&count, // uint32_t*

15 // pointer to the number of layer properties available

16 NULL); // VkLayerProperties* A
17 // pointer to an array of VkLayerProperties structures

18
19
20 DBG_ASSERT(VK_SUCCESS == result);

DRAFT REVISION DRAFT REVISION

D
RA
FT

programming (11 steps) 85

21 DBG_ASSERT(count > 0);

22
23 vector<VkLayerProperties> instanceLayers;

24 instanceLayers.resize(count);

25 // As the VkLayerProperties structure array is not NULL the function returns

26 // the layer properties

27 result =

28 vkEnumerateInstanceLayerProperties (&count, // uint32_t*

29 // pointer to the number of layer properties available

30 &instanceLayers[0]); // VkLayerProperties* B
31 // pointer to an array of VkLayerProperties structures

32
33
34
35 // Extension properties

36 // vkEnumerateInstanceExtensionProperties - Returns the requested number

37 // of global extension properties. The count relates to the number of

38 // extension properties available

39 result =

40 vkEnumerateInstanceExtensionProperties (NULL, // const char*

41 // pointer to the name of the layer to retrieve extensions for

42 &count, // uint32_t*
43 // pointer to the number of extension properties available

44 NULL); // VkExtensionProperties* C
45 // pointer to an array of VkExtensionProperties structures

46
47 DBG_ASSERT(VK_SUCCESS==result);

48 DBG_ASSERT(count > 0);

49
50 vector<VkExtensionProperties> instanceExtension;

51 instanceExtension.resize(count);

52 // Array of LayerNames not NULL so returns an array of null-terminated UTF-8 strings

53 // names for the retrievable extensions.

54 // The VkExtensionProperties structures is not NULL so returns the extension properties

55 result =

56 vkEnumerateInstanceExtensionProperties (NULL, // const char*

57 // pointer to the name of the layer to retrieve extensions for

58 &count, // uint32_t*
59 // pointer to the number of extension properties available

60 &instanceExtension[0]); // VkExtensionProperties* D
61 // pointer to an array of VkExtensionProperties structures

62
63 vector<string> extensionNames;

64 extensionNames.resize(count);

65
66
67 /*
68 e.g., VK_LAYER_NV_optimus or VK_LAYER_LUNARG_standard_validation

69 */

70
71 const char *layers[] = { "VK_LAYER_NV_optimus" };

72
73 #ifdef ENABLE_VULKAN_DEBUG_CALLBACK // access debug callbacks

74 const char *extensions[] = { "VK_KHR_surface",

75 "VK_KHR_win32_surface",

76 "VK_EXT_debug_report"};

77
78 #else

79 const char *extensions[] = { "VK_KHR_surface",

80 "VK_KHR_win32_surface" };

DRAFT REVISION DRAFT REVISION

D
RA
FT

86 introduction to computer graphics and the vulkan api

81 #endif

82
83 {

84 VkApplicationInfo ai = { };

85 ai.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;

86 ai.pApplicationName = "Hello Vulkan";

87 ai.engineVersion = 1;

88 ai.apiVersion = VK_API_VERSION_1_0;

89
90 VkInstanceCreateInfo ici = { };

91 ici.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;

92 ici.flags = 0;

93 ici.pNext = 0;

94 ici.pApplicationInfo = &ai;

95 ici.enabledLayerCount = 1;

96 ici.ppEnabledLayerNames = layers;

97 ici.enabledExtensionCount = 2;

98 #ifdef ENABLE_VULKAN_DEBUG_CALLBACK // access debug callbacks

99 ici.enabledExtensionCount = 3;

100 #endif

101 ici.ppEnabledExtensionNames = extensions;

102
103 // vkCreateInstance verifies that the requested layers exist. If not,

104 // vkCreateInstance will return VK_ERROR_LAYER_NOT_PRESENT

105 VkResult result =

106 vkCreateInstance (&ici, // const VkInstanceCreateInfo*

107 // points to an instance of VkInstanceCreateInfo controlling creation

108 NULL, // const VkAllocationCallbacks*
109 // controls host memory allocation

110 outInstance); // VkInstance* E
111 // pointer to a VkInstance handle for the returning resulting instance

112
113 DBG_ASSERT_VULKAN_MSG(result,

114 "Failed to create vulkan instance.");

115 DBG_ASSERT(*outInstance!=NULL);

116 }

117
118 // Optional - if you want Vulkan to tell you if something is wrong

119 // you must set the callback

120 #ifdef ENABLE_VULKAN_DEBUG_CALLBACK

121 ...

122 #endif

123
124
125 // You need to define what type of surface you’ll be

126 // rendering to - this will depend on your computer

127 // and operating system (Win32)

128 HINSTANCE hInst = GetModuleHandle(NULL);

129
130 // setup parameters for your new windows

131 // surface you’ll render into:

132 VkWin32SurfaceCreateInfoKHR sci = {};

133 sci.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;

134 // parameter is NULL, GetModuleHandle returns a handle

135 // to the file used to create the calling process

136 sci.hinstance = hInst;

137 // Your window handle (HWND)

138 sci.hwnd = windowHandle;

139
140 DBG_ASSERT(*outSurface==NULL);

141

DRAFT REVISION DRAFT REVISION

D
RA
FT

programming (11 steps) 87

142 // To create a VkSurfaceKHR object for a Win32 window, call:

143 VkResult result =

144 vkCreateWin32SurfaceKHR (*outInstance, // VkInstance

145 // instance to associate with the surface

146 &sci, // const VkWin32SurfaceCreateInfoKHR*
147 // pointer to VkWin32SurfaceCreateInfoKHR structure parameters for the surface object

148 NULL, // const VkAllocationCallbacks*
149 // allocator used for host memory allocated for the surface object

150 outSurface); // VkSurfaceKHR* F
151 // VkSurfaceKHR handle in which the created surface object is returned

152
153 DBG_ASSERT_VULKAN_MSG(result,

154 "Could not create surface.");

155 DBG_ASSERT(outSurface!=NULL);

156
157 }// End SetupVulkanInstance(..)

The process for setting up the Vulkan instance is:

A identify the available layers and extensions (e.g., vkEnumerateIn-
stanceLayerProperties)

E create the Vulkan instance (completing the structure parameters for
all the information, such as, version, name, ..)

F create the output surface and connect it with the operating system
specific window (Window handle in this case)

While Listing 6.2, focuses on a Microsoft Windows solution, similar
functions are available for platform specific Vulkan API (e.g., vkCre-
ateWin32SurfaceKHR), such as, Android:

1 // To create a VkSurfaceKHR object for an Android native window, you’d call:

2 VkResult vkCreateAndroidSurfaceKHR(

3 VkInstance instance,

4 const VkAndroidSurfaceCreateInfoKHR* pCreateInfo,

5 const VkAllocationCallbacks* pAllocator,

6 VkSurfaceKHR* pSurface);

6.2 Debugging

You should start thinking about debugging (and defensive program-
ming) from the start. For instance, a few reasons debugging in Vulkan
is challenging:

• May be no obvious relationship between the manifestation(s) of the
error and the causes(s)

• Symptoms and cause may be in remote/different parts of the pro-
gram

• Changes (new features and bug fixes) in the program may mask (or
modify) bugs

DRAFT REVISION DRAFT REVISION

D
RA
FT

88 introduction to computer graphics and the vulkan api

• Symptoms may be due to human mistakes or misunderstanding
that is difficult to trace

• Bugs may be triggered by rare or difficult to reproduce sequences,
program timing (threads) or other causes

• Bugs may depend on other software/system states (external li-
braries/code)

Figure 6.3: Conventional debugging cy-
cle.

The default Vulkan API does not enable debugging/checking. Hence,
you need to link in to the debug report callback functions to provide
you with feedback on warning and issues as they occur.

Listing 6.3: Enabling the built in debugging and warning feedback notifications within Vulkan.
1 // Optional - if you want Vulkan to tell you if something is wrong

2 // you must set the callback

3 #ifdef ENABLE_VULKAN_DEBUG_CALLBACK

4 {

5 // Register your error logging function (defined at the top of the file)

6 VkDebugReportCallbackEXT error_callback = VK_NULL_HANDLE;

7 VkDebugReportCallbackEXT warning_callback = VK_NULL_HANDLE;

8

9 PFN_vkCreateDebugReportCallbackEXT vkCreateDebugReportCallbackEXT = NULL; A
10

11 *(void **)& vkCreateDebugReportCallbackEXT =

12 vkGetInstanceProcAddr(*outInstance, "vkCreateDebugReportCallbackEXT");

13 DBG_ASSERT(vkCreateDebugReportCallbackEXT); B
14
15
16 VkDebugReportCallbackCreateInfoEXT cb_create_info = {};

17 cb_create_info.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;

18 cb_create_info.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT;

19 cb_create_info.pfnCallback = &MyDebugReportCallback;

20
21 // Setup error callback function notifications

22 VkResult result =

23 vkCreateDebugReportCallbackEXT (*outInstance,

24 // valid VkInstance handle

25 &cb_create_info,

26 // // pointer to a valid VkDebugReportCallbackCreateInfoEXT structure

27 nullptr,

28 // If pointer is not NULL then allocator callback manager

29 &error_callback); C
30 // pointer to a VkDebugReportCallbackEXT handle

31
32 DBG_ASSERT_VULKAN_MSG(result, "vkCreateDebugReportCallbackEXT(ERROR) failed");

33
34 // Capture warning as well as errors

35 cb_create_info.flags = VK_DEBUG_REPORT_WARNING_BIT_EXT |

36 VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT;

37 cb_create_info.pfnCallback = &MyDebugReportCallback;

38
39 // Setup warning callback function notifications

40 result =

41 vkCreateDebugReportCallbackEXT (*outInstance,

42 // valid VkInstance handle

43 &cb_create_info,

DRAFT REVISION DRAFT REVISION

D
RA
FT

programming (11 steps) 89

44 // pointer to a valid VkDebugReportCallbackCreateInfoEXT structure

45 nullptr,

46 // If pointer is not NULL then allocator callback manager

47 &warning_callback); D
48 // pointer to a VkDebugReportCallbackEXT handle

49
50 DBG_ASSERT_VULKAN_MSG(result, "vkCreateDebugReportCallbackEXT(WARN) failed");

51 }

52 #endif

A good habit to get into is using regular sanity checks throughout your
implementation. For example, debug asserts (DBG_ASSERT) as shown
below. The Vulkan API requires a large number of structures and
fields to be setup and configured. For any unknown reason, such as,
a typing mistake or some custom detail specific to the hardware, may
result in the graphical application failing - importantly, leaving you
struggling to work out why. Hence, try and check every return value
(e.g., ‘VK_SUCCESS’) and if a function fails - trigger an assert (don’t
try and hide the problem) - have the error shout out with the details so
you can investigate why it failed and resolve the problem asap. This is
also a good habit to get into for helping others, as it makes your code
more readable - so other developers are able to understand your code
easier and if it fails they’re also able to fix the problem quickly as well.

Listing 6.4: Custom asserts to provide an additional layer of checking.
Custom asserts also provide flexibility (e.g., write to log files, trigger
breakpoints, or disable them easily).
1 #if defined(_WIN32)

2 #define DBG_ASSERT(f) { if(!(f)){ __debugbreak(); }; }

3 #else

4 #define DBG_ASSERT(f) { } // Other operating system debug

5 #endif

6
7 // NAN Test

8 #define DBG_VALID(f) { if((f)!=(f)){ DBG_ASSERT(false);} }

9
10 // Assert with message

11 #define DBG_ASSERT_MSG(val, errmsg) \

12 if(!(val)){ \

13 DBG_ASSERT(false) \

14 }

15
16 #define DBG_ASSERT_VULKAN_MSG(val, errmsg) \

17 if(!((VK_SUCCESS == val))){ \

18 DBG_ASSERT(false) \

19 }

While in the long run, you’d incorporate a variety of complex test func-
tions within a structured framework (unit tests), yet asserts provide an
effective and efficient debugging tool for identifying issues during the
initial phases. You need to use a custom ‘macro’ instead of the system

DRAFT REVISION DRAFT REVISION

D
RA
FT

90 introduction to computer graphics and the vulkan api

assert directly, so you’re able to control your asserts - like having the
assert trigger a breakpoint at the line causing the validation fault. Fur-
thermore, for release builds, you’d be able to customize the macro so
instead of ‘triggering’ a breakpoint, you may want to write the error
to a log file or bring up a dialog error window.

6.3 (Step 3) Device(s)

Figure 6.4: The Vulkan API is designed
to support ‘multiple’ devices with vary-
ing capabilities.

The system may have multiple devices. Each device may have similar
or different capabilities. The physical device is identified in Vulkan
using the type ‘VkPhysicalDevice. Provides a handle to query the
device about its capabilities, such as, Memory Management Queues
Objects Buffers Images and Sync Primitives. For example, the ‘Geforce
GTX 980’ has different capabilities than the ‘Tegra X1’.

Listing 6.5: Determining what devices are on your system and with what capabilities.
1 // Step 3 - Find/Create Device

2 void SetupPhysicalDevice(VkInstance instance,

3 VkPhysicalDevice* outPhysicalDevice,

4 VkDevice* outDevice)

5 {

6 // Query how many devices are present in the system

7 uint32_t deviceCount = 0;

8 // Enumerates the physical devices accessible to a Vulkan instance

9 // The instance is the handle to a Vulkan instance you previously

10 // created with vkCreateInstance. The VkPhysicalDevice pointer

11 // can be either NULL or a pointer to an array of VkPhysicalDevice handles.

12 VkResult result =

13 vkEnumeratePhysicalDevices (instance, // VkInstance

14 // handle to a Vulkan instance previously created with vkCreateInstance

15 &deviceCount, // uint32_t*
16 // pointer to an integer related to the number of physical devices available or queried

17 NULL); // VkPhysicalDevice* A
18 // either NULL or a pointer to an array of VkPhysicalDevice handles

19
20 DBG_ASSERT_VULKAN_MSG(result,

21 "Failed to query the number of physical devices present");

22
23 // There has to be at least one device present

24 DBG_ASSERT_MSG(0 != deviceCount,

25 "Couldn’t detect any device present with Vulkan support");

26
27 // Get the physical devices

28 vector<VkPhysicalDevice> physicalDevices(deviceCount);

29
30 // Gets the VkPhysicalDevice handles.

31 result =

32 vkEnumeratePhysicalDevices (instance, // VkInstance

33 // handle to a Vulkan instance previously created with vkCreateInstance

34 &deviceCount, // uint32_t*
35 // pointer to an integer related to the number of physical devices available or queried

36 &physicalDevices[0]); // VkPhysicalDevice* B
37 // either NULL or a pointer to an array of VkPhysicalDevice handles

DRAFT REVISION DRAFT REVISION

D
RA
FT

programming (11 steps) 91

38 DBG_ASSERT_VULKAN_MSG(result,

39 "Faied to enumerate physical devices present");

40 DBG_ASSERT(physicalDevices.size()>0);

41
42 // Use the first available device

43 *outPhysicalDevice = physicalDevices[0];

44
45
46 // Enumerate all physical devices and print out the details

47 for (uint32_t i = 0; i < deviceCount; ++i)

48 {

49 VkPhysicalDeviceProperties deviceProperties;

50 memset(&deviceProperties, 0, sizeof deviceProperties);

51
52 // Gets the properties of a physical device

53 vkGetPhysicalDeviceProperties (physicalDevices[i], // physicalDevice

54 // handle to the physical device whose properties will be queried

55 &deviceProperties); // pProperties C
56 // pointer to VkPhysicalDeviceProperties structure, that is filled with information

57
58 dprintf("Driver Version: %d\n", deviceProperties.driverVersion);

59 dprintf("Device Name: %s\n", deviceProperties.deviceName);

60 dprintf("Device Type: %d\n", deviceProperties.deviceType);

61 dprintf("API Version: %d.%d.%d\n",

62 (deviceProperties.apiVersion>>22)&0x3FF,

63 (deviceProperties.apiVersion>>12)&0x3FF,

64 (deviceProperties.apiVersion&0xFFF));

65 }//End for i

66
67
68 // Fill up the physical device memory properties:

69 VkPhysicalDeviceMemoryProperties memoryProperties;

70 vkGetPhysicalDeviceMemoryProperties (*outPhysicalDevice,

71 // handle to the device to query

72 &memoryProperties); D
73 // pointer to VkPhysicalDeviceMemoryProperties structure returned with properties

74 // Here’s where you initialize your queues

75 // You’ll discuss queues next - however, you need to specify the queue

76 // details for the device creation info

77 VkDeviceQueueCreateInfo queueCreateInfo = {};

78 queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;

79 // Use the first queue family in the family list

80 queueCreateInfo.queueFamilyIndex = 0;

81 queueCreateInfo.queueCount = 1;

82 float queuePriorities[] = { 1.0f };

83 queueCreateInfo.pQueuePriorities = queuePriorities;

84
85 // Same extension you specified when initializing Vulkan

86 const char *deviceExtensions[] = { "VK_KHR_swapchain" };

87
88 const char *layers[] = { "VK_LAYER_NV_optimus" };

89
90 VkDeviceCreateInfo dci = {};

91 dci.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

92 // Set queue info on your device

93 dci.queueCreateInfoCount = 1;

94 dci.pQueueCreateInfos = &queueCreateInfo;

95 dci.enabledLayerCount = 0;

96 dci.ppEnabledLayerNames = layers;

97 dci.enabledExtensionCount = 1;

DRAFT REVISION DRAFT REVISION

D
RA
FT

92 introduction to computer graphics and the vulkan api

98 dci.ppEnabledExtensionNames = deviceExtensions;

99
100 VkPhysicalDeviceFeatures features = {};

101 features.shaderClipDistance = VK_TRUE;

102 dci.pEnabledFeatures = &features;

103
104 // Ideally, you’d want to enumerate and find the best

105 // device, however, you just use the first device

106 // ‘physicalDevices[0]’ for your sample, which you

107 // stored in the previous section

108 result =

109 vkCreateDevice (*outPhysicalDevice, // physicalDevice

110 // valid handles returned from vkEnumeratePhysicalDevices

111 &dci, // pCreateInfo

112 // pointer to a VkDeviceCreateInfo structure containing device data

113 NULL, // pAllocator

114 // optional control of host memory allocation

115 outDevice); // pDevice E
116 // pointer to a handle in which the created VkDevice is returned

117
118 DBG_ASSERT_VULKAN_MSG(result, "Failed to create logical device!");

119 }// End SetupPhysicalDevice(..)

With reference to Listing 6.5, the flow of logic to finding and creating
the physical device are:

A vkEnumeratePhysicalDevices - query how many devices are
present in the system

B vkEnumeratePhysicalDevices - call again to get the physical devices

C vkGetPhysicalDeviceProperties - get properties for each device
(help make your decision on which one to choose or on the selected
one)

D vkGetPhysicalDeviceMemoryProperties - more properties on the
chosen device before you go ahead and create the device

E vkCreateDevice - finally create your device

6.4 (Step 4) Swap-Chain

There is ‘no’ default framebuffer in Vulkan. You are able to create an
application that displays everything or nothing (total control). Hence,
to display something you’ll need to create a set of render buffers. These
buffers (and their properties) are called the ‘swap chain’. As empha-
sised, you have total control over your swap chain, which means, you
can create and use lots of buffers however you want. A few important
details when creating your swap chain image buffers:

Figure 6.5: The swap-chain is a chain of
buffers that swap position each time a
new frame is rendered.

1. define the surface format
2. create rendering context (connect the swap chain with the presen-

tation output)

DRAFT REVISION DRAFT REVISION

D
RA
FT

programming (11 steps) 93

3. you’ll need to be able to ‘destroy’ and ‘recreate’ the swap chain if
the window or parameters change (e.g., window resized or the user
changes the render options)

Listing 6.6: Managing the screen capabilities and render surfaces.
1 // Step -4-

2 void SetupSwapChain(VkDevice device,

3 VkPhysicalDevice physicalDevice,

4 VkSurfaceKHR surface,

5 int* outWidth,

6 int* outHeight,

7 VkSwapchainKHR* outSwapChain,

8 VkImage** outPresentImages,

9 VkImageView** outPresentImageViews)

10 {

11 {

12 // Create swap-chain

13 // swap-chain creation:

14 VkSurfaceCapabilitiesKHR surfaceCapabilities = {};

15 // You’ll query the basic capabilities of the surface in order to create a swapchain

16 vkGetPhysicalDeviceSurfaceCapabilitiesKHR (physicalDevice, // physicalDevice

17 // physical device that will be associated with the swapchain to be created

18 surface, // surface

19 // surface that will be associated with the swapchain

20 &surfaceCapabilities); // pSurfaceCapabilities A
21 // pointer to the VkSurfaceCapabilitiesKHR structure with retrived data

22
23 VkExtent2D surfaceResolution = surfaceCapabilities.currentExtent;

24 *outWidth = surfaceResolution.width;

25 *outHeight = surfaceResolution.height;

26
27
28 VkSwapchainCreateInfoKHR ssci = {};

29 ssci.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;

30 ssci.surface = surface;

31 // You’ll use 2 for ‘double’ buffering

32 ssci.minImageCount = 2;

33 ssci.imageFormat = VK_FORMAT_B8G8R8A8_UNORM;

34 ssci.imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;

35 ssci.imageExtent = surfaceResolution;

36 ssci.imageArrayLayers = 1;

37 ssci.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

38 ssci.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;

39 ssci.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;

40 ssci.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;

41 ssci.presentMode = VK_PRESENT_MODE_MAILBOX_KHR;

42 // If you want clipping outside the extents

43 ssci.clipped = true;

44 ssci.oldSwapchain = NULL;

45
46 VkResult result =

47 vkCreateSwapchainKHR (device, // device

48 // VkDevice to associate the swapchain

49 &ssci, // pCreateInfo

50 // pointer to VkSwapchainCreateInfoKHR structure with swapchain creation parameters

51 NULL, // pAllocator

52 // optional allocator used for host memory

53 outSwapChain); // pSwapchain B

DRAFT REVISION DRAFT REVISION

D
RA
FT

94 introduction to computer graphics and the vulkan api

54 // resulting swapchain

55 DBG_ASSERT_VULKAN_MSG(result,

56 "Failed to create swapchain.");

57 }

58
59 // Create your images ’double’ buffering

60 {

61 uint32_t imageCount = 0;

62 // You’ll need to obtain the array of presentable images associated

63 // with the swapchain you created. First, you pass in ‘NULL’ to

64 // obtain the number of images (i.e., should be 2)

65 vkGetSwapchainImagesKHR (device, // device

66 // device associated with swapchain

67 *outSwapChain, // swapchain

68 // swapchain to query

69 &imageCount, // pSwapchainImageCount

70 // pointer to an integer related to the number of format pairs available

71 NULL); // pSwapchainImages C
72 // either NULL or a pointer to an array of VkSwapchainImageKHR structures

73 DBG_ASSERT(imageCount==2);

74
75 // this should be 2 for double-buffering

76 *outPresentImages = new VkImage[imageCount];

77
78 // Obtain the presentable images and link them to

79 // the images in the swapchain

80 VkResult result =

81 vkGetSwapchainImagesKHR (device, // device

82 // device associated with swapchain

83 *outSwapChain, // swapchain

84 // swapchain to query

85 &imageCount, // pSwapchainImageCount

86 // pointer to an integer related to the number of format pairs available

87 *outPresentImages); // pSwapchainImages D
88 // either NULL or a pointer to an array of VkSwapchainImageKHR structures

89
90 DBG_ASSERT_VULKAN_MSG(result,

91 "Failed to create swap-chain images");

92 }

93
94
95 {

96 // You have 2 for double buffering

97 *outPresentImageViews = new VkImageView[2];

98 for(uint32_t i = 0; i < 2; ++i)

99 {

100 // create VkImageViews for your swap chain

101 // VkImages buffers:

102 VkImageViewCreateInfo ivci = {};

103 ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;

104 ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;

105 ivci.format = VK_FORMAT_B8G8R8A8_UNORM;

106 ivci.components.r = VK_COMPONENT_SWIZZLE_R;

107 ivci.components.g = VK_COMPONENT_SWIZZLE_G;

108 ivci.components.b = VK_COMPONENT_SWIZZLE_B;

109 ivci.components.a = VK_COMPONENT_SWIZZLE_A;

110 ivci.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;

111 ivci.subresourceRange.baseMipLevel = 0;

112 ivci.subresourceRange.levelCount = 1;

113 ivci.subresourceRange.baseArrayLayer = 0;

DRAFT REVISION DRAFT REVISION

D
RA
FT

programming (11 steps) 95

114 ivci.subresourceRange.layerCount = 1;

115 ivci.image = (*outPresentImages)[i];

116
117 // Create an image view from an existing image

118 VkResult result =

119 vkCreateImageView (device, // device

120 // logical device that creates the image view

121 &ivci, // pCreateInfo

122 // pointer to instance of the VkImageViewCreateInfo structure containing parameters for the image view

123 NULL, // pAllocator

124 // optional controls host memory allocation

125 &(*outPresentImageViews)[i]); // pView E
126 // pointer to VkImageView handle for returned image view object

127
128 DBG_ASSERT_VULKAN_MSG(result,

129 "Could not create ImageView.");

130 }// End for i

131 }

132 }// End SetupSwapChain(..)

Looking at Listing 6.6, you’ll see the implementation specifics for con-
figuring and setting up your swapchain:

A vkGetPhysicalDeviceSurfaceCapabilitiesKHR

B vkCreateSwapchainKHR

C vkGetSwapchainImagesKHR is called twice as you’ll want to dou-
ble buffer the swap chain (front and back buffer)

E vkCreateImageView

6.5 (Step 5) FrameBuffer & Render-Pass

The framebuffer in Vulkan is simpler than previous traditional
OpenGL implementations. In Vulkan you have a ‘Bag’ or ‘Repository’
of resource views. The render-pass defines the role of framebuffer
resources. Importantly, you can have more than one pass with each
pass defining which framebuffer resource to use. While the render-
pass might seem like additional work, as you start to generate more
complex scenes, the render-pass gives you additional screen control.
For example, post-processing and deferred rendering (e.g., mapping
specific regions or order of processing to different threads/GPUs).
The listing below sets a basic fullscreen render-pass (i.e., one display
update with no sub-passes). With reference to the command-buffer
(in the next section), you can use the command-buffer for several
render-passes. You can also use a single command-buffer to draw a
whole frames with the multiple passes contributing to techniques like
shadow mapping and post-processing (managing these process more
efficiently).

DRAFT REVISION DRAFT REVISION

D
RA
FT

96 introduction to computer graphics and the vulkan api

1 // Step -5-

2 void SetupRenderPass(VkDevice device,

3 VkPhysicalDevice physicalDevice,

4 int width,

5 int height,

6 VkImageView* presentImageViews,

7 VkRenderPass* outRenderPass,

8 VkFramebuffer** outFrameBuffers)

9 {

10 // Frame buffer

11 // define your attachment points

12
13 #ifdef DEPTH_BUFFER

14 // Extension (Depth Buffer)

15 VkImage depthImage = NULL;

16 VkImageView depthImageView = NULL;

17
18 {

19 // create a depth image:

20 VkImageCreateInfo imageCreateInfo = {};

21 imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;

22 imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;

23 imageCreateInfo.format = VK_FORMAT_D16_UNORM;

24 VkExtent3D ef = { width, height, 1 };

25 imageCreateInfo.extent = ef;

26 imageCreateInfo.mipLevels = 1;

27 imageCreateInfo.arrayLayers = 1;

28 imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;

29 imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;

30 imageCreateInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;

31 imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

32 imageCreateInfo.queueFamilyIndexCount = 0;

33 imageCreateInfo.pQueueFamilyIndices = NULL;

34 imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;

35
36 // Create a new image object for your depth buffer

37 VkResult result =

38 vkCreateImage (device, // device

39 // logical device that creates the image

40 &imageCreateInfo, // pCreateInfo

41 // pointer to VkImageCreateInfo structure with parameters for the created image

42 NULL, // pAllocator

43 // optional control host memory allocation

44 &depthImage); // pImage A
45 // pointer to VkImage handle returned image object

46
47 DBG_ASSERT_VULKAN_MSG(result,

48 "Failed to create depth image.");

49
50 VkMemoryRequirements memoryRequirements = {};

51 vkGetImageMemoryRequirements (device, // device

52 // logical device that owns the image

53 depthImage, // image

54 // image to query

55 &memoryRequirements); // pMemoryRequirements B
56 // instance pointer to VkMemoryRequirements structure returned memory requirements

57
58 // memoryRequirements contains memoryTypeBits member which is a bitmask - each one of the

59 // bits is set for every supported memory type for the resource. Bit i is set if and only

60 // if the memory type i in the VkPhysicalDeviceMemoryProperties structure for the physical

DRAFT REVISION DRAFT REVISION

D
RA
FT

programming (11 steps) 97

61 // device is supported for the resource.

62
63 // Allocate memory for your depth buffer

64 VkMemoryAllocateInfo imageAllocateInfo = {};

65 imageAllocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;

66 imageAllocateInfo.allocationSize = memoryRequirements.size;

67
68 // memoryTypeBits is a bitfield where if bit i is set, it means that

69 // the VkMemoryType i of the VkPhysicalDeviceMemoryProperties structure

70 // satisfies the memory requirements:

71 // read the device memory properties

72 VkPhysicalDeviceMemoryProperties memoryProperties;

73 vkGetPhysicalDeviceMemoryProperties (physicalDevice,

74 // handle to the device to query.

75 &memoryProperties); C
76 // returned pointer to instance of VkPhysicalDeviceMemoryProperties structure

77
78 uint32_t memoryTypeBits = memoryRequirements.memoryTypeBits;

79 for(uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)

80 {

81 VkMemoryType memoryType = memoryProperties.memoryTypes[i];

82 if(memoryTypeBits & 1)

83 {

84 if((memoryType.propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT))

85 {

86 // save index

87 imageAllocateInfo.memoryTypeIndex = i;

88 break;

89 }

90 }

91 memoryTypeBits = memoryTypeBits >> 1;

92 }// End for i

93
94 VkDeviceMemory imageMemory = { 0 };

95 result = vkAllocateMemory (device,

96 // logical device that owns the memory

97 &imageAllocateInfo,

98 // pointer to VkMemoryAllocateInfo structure describing parameters of the allocation

99 NULL,

100 // optional control host memory allocation

101 &imageMemory); D
102 // pointer to returned VkDeviceMemory handle with information about the allocated memory

103
104 DBG_ASSERT_VULKAN_MSG(result, "Failed to allocate device memory.");

105

106 result = vkBindImageMemory (device,

107 // logical device that owns the image and memory

108 depthImage,

109 // image to bind

110 imageMemory, 0); E
111 // start offset of the region of memory which is to be bound to the image

112
113 DBG_ASSERT_VULKAN_MSG(result, "Failed to bind image memory.");

114
115 // create the depth image view:

116 VkImageAspectFlags aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;

117 VkImageViewCreateInfo imageViewCreateInfo = {};

118 imageViewCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;

119 imageViewCreateInfo.image = depthImage;

120 imageViewCreateInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;

DRAFT REVISION DRAFT REVISION

D
RA
FT

98 introduction to computer graphics and the vulkan api

121 imageViewCreateInfo.format = imageCreateInfo.format;

122 VkComponentMapping g = { VK_COMPONENT_SWIZZLE_IDENTITY,

123 VK_COMPONENT_SWIZZLE_IDENTITY,

124 VK_COMPONENT_SWIZZLE_IDENTITY,

125 VK_COMPONENT_SWIZZLE_IDENTITY };

126 imageViewCreateInfo.components = g;

127 imageViewCreateInfo.subresourceRange.aspectMask = aspectMask;

128 imageViewCreateInfo.subresourceRange.baseMipLevel = 0;

129 imageViewCreateInfo.subresourceRange.levelCount = 1;

130 imageViewCreateInfo.subresourceRange.baseArrayLayer = 0;

131 imageViewCreateInfo.subresourceRange.layerCount = 1;

132 result =

133 vkCreateImageView (device,

134 // logical device that creates the image view

135 &imageViewCreateInfo,

136 // pointer to instance of the VkImageViewCreateInfo structure containing parameters for created image view

137 NULL,

138 // optional control host memory allocation

139 &depthImageView); F
140 // pointer to returned VkImageView handle object

141
142 DBG_ASSERT_VULKAN_MSG(result,

143 "Failed to create image view.");

144 }

145 #endif // DEPTH_BUFFER

146
147 // 0 - color screen buffer

148 VkAttachmentDescription pass[2] = { };

149 pass[0].format = VK_FORMAT_B8G8R8A8_UNORM;

150 pass[0].samples = VK_SAMPLE_COUNT_1_BIT;

151 pass[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;

152 pass[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;

153 pass[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;

154 pass[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;

155 pass[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

156 pass[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

157
158 VkAttachmentReference car = {};

159 car.attachment = 0;

160 car.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

161
162 // 1 - depth buffer

163 pass[1].format = VK_FORMAT_D16_UNORM;

164 pass[1].samples = VK_SAMPLE_COUNT_1_BIT;

165 pass[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;

166 pass[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;

167 pass[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;

168 pass[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;

169 pass[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

170 pass[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

171
172 // create the one main subpass of your renderpass:

173 VkSubpassDescription subpass = {};

174 subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;

175 subpass.colorAttachmentCount = 1;

176 subpass.pColorAttachments = &car;

177 subpass.pDepthStencilAttachment = NULL;

178
179 #ifdef DEPTH_BUFFER

180 VkAttachmentReference dar = {};

181 dar.attachment = 1;

DRAFT REVISION DRAFT REVISION

D
RA
FT

programming (11 steps) 99

182 dar.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

183 subpass.pDepthStencilAttachment = &dar;

184 #endif

185 // create your main renderpass

186 VkRenderPassCreateInfo rpci = {};

187 rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;

188 rpci.attachmentCount = 1; // color

189 #ifdef DEPTH_BUFFER

190 rpci.attachmentCount = 2; // color and depth

191 #endif

192 rpci.pAttachments = pass;

193 rpci.subpassCount = 1;

194 rpci.pSubpasses = &subpass;

195
196 VkResult result =

197 vkCreateRenderPass (device,

198 // logical device that creates the render pass

199 &rpci,

200 // pointer to VkRenderPassCreateInfo structure describing parameters of the render pass

201 NULL,

202 // optional host memory allocation control

203 outRenderPass); G
204 // pointer VkRenderPass handle in which the resulting render pass object is returned

205
206 DBG_ASSERT_VULKAN_MSG(result,

207 "Failed to create renderpass");

208
209 #ifdef DEPTH_BUFFER

210 VkImageView frameBufferAttachments[2] = {0};

211 #else

212 VkImageView frameBufferAttachments[1] = {0};

213 #endif

214 // create your frame buffers:

215 VkFramebufferCreateInfo fbci = {};

216 fbci.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;

217 fbci.renderPass = *outRenderPass;

218 // must be equal to the attachment count on render pass

219 fbci.attachmentCount = 1;

220 #ifdef DEPTH_BUFFER

221 fbci.attachmentCount = 2;

222 #endif

223 fbci.pAttachments = frameBufferAttachments;

224 fbci.width = width;

225 fbci.height = height;

226 fbci.layers = 1;

227
228
229 // create a framebuffer per swap chain imageView:

230 *outFrameBuffers = new VkFramebuffer[2];

231 for(uint32_t i = 0; i < 2; ++i)

232 {

233 frameBufferAttachments[0] = presentImageViews[i];

234 #ifdef DEPTH_BUFFER

235 frameBufferAttachments[1] = depthImageView;

236 #endif

237 // Create a new framebuffer object

238 result =

239 vkCreateFramebuffer (device, // device

240 // logical device that creates the framebuffer

241 &fbci, // pCreateInfo

DRAFT REVISION DRAFT REVISION

D
RA
FT

100 introduction to computer graphics and the vulkan api

242 // pointer to VkFramebufferCreateInfo structure describing framebuffer creation

243 NULL, // pAllocator

244 // optional control of host memory allocation

245 &(*outFrameBuffers)[i]); // pFramebuffer H
246 // pointer to returned VkFramebuffer handle for the framebuffer object

247
248 DBG_ASSERT_VULKAN_MSG(result,

249 "Failed to create framebuffer.");

250 }// End for i

251 }// End SetupRenderPass(..)

Looking at Listing 6.5, you’ll see the implementation specifics for con-
figuring and setting up your framebuffer and render-pass:

A vkCreateImage

B vkGetImageMemoryRequirements

C vkGetPhysicalDeviceMemoryProperties

D vkAllocateMemory

E vkBindImageMemory

F vkCreateImageView

G vkCreateRenderPass

H vkCreateFramebuffer

6.6 (Step 6) Command-Buffers

Vulkan Rendering is done through Command-Buffers. The Command-
Buffers are allocated from Command-Pools. Typically you have a
Command-Pools associated with each thread and only use this thread
when you write to the Command-Buffers allocated from its Command-
Pool. This is because, it would be inefficient to externally synchronize
access between the Command-Buffers and the Command-Pools (i.e.,
added overhead). Each Command-Buffer can be created either for one
shot case or for multiple frames/submissions. Cannot call Command-
Buffers from GPU (command-lists can). The API commands for
filling the Command-Buffer begin with ‘vkCmd’..() and need to be
done between a ‘Begin’ and ‘End’. Importantly, the Command-Buffer
mechanism is designed to be multi-threading friendly. The ‘primary’
Command-Buffer can call many secondary Command-Buffers.

Listing 6.7: Command-Buffers are crucial elements for controlling the renderering.
1 // Step -6-

2 void SetupCommandBuffer(VkDevice device,

3 VkPhysicalDevice physicalDevice,

4 VkCommandBuffer* outCommandBuffer)

5 {

6 // Give your device some commands (orders)

7 {

DRAFT REVISION DRAFT REVISION

D
RA
FT

